Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey Ivanchuk is active.

Publication


Featured researches published by Stacey Ivanchuk.


International Journal of Developmental Neuroscience | 1999

Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells.

James T. Rutka; Stacey Ivanchuk; Soma Mondal; Michael D. Taylor; Keiichi Sakai; Peter Dirks; Peter Jun; Shin Jung; Laurence E. Becker; Cameron Ackerley

Intermediate filaments (IFs) are highly diverse intracytoplasmic proteins within the cytoskeleton which exhibit cell type specificity of expression. A growing body of evidence suggests that IFs may be involved as collaborators in complex cellular processes controlling astrocytoma cell morphology, adhesion and proliferation. As the co‐expression of different IF subtypes has been linked to enhanced motility and invasion in a number of different cancer subtypes, we undertook the present study to examine the expression of vimentin and nestin in a panel of human astrocytoma cell lines whose tumorigenicity, invasiveness and cytoskeletal protein profiles are well known. Astrocytoma cells were examined for IF protein expression by immunofluorescence confocal and immunoelectron microscopy. The motility of all cell lines was determined by computerized time‐lapse videomicroscopy. Invasive potential of astrocytoma cells was determined using Matrigel as a barrier to astrocytoma cell invasion in vitro. Vimentin was expressed by all astrocytoma cell lines. On the other hand, nestin was variably expressed among the different cell lines. The most motile and invasive astrocytoma cell line in our study was antisense GFAP‐transfected U251 (asU251) astrocytoma cells which showed marked up‐regulation of nestin expression compared to the U251 parental cell line and controls. The U87 astrocytoma cell line also demonstrated high nestin expression levels and was associated with an increased basal motility rate and a high degree of invasiveness through Matrigel. U343 astrocytoma cells did not express nestin, but had high levels of GFAP. It had the lowest motility rate and invasiveness of all the astrocytoma cell lines examined. Taken together, these data suggest that for the astrocytoma cell lines examined in this study, nestin and vimentin co‐expression may serve as a marker for an astrocytoma cell type with enhanced motility and invasive potential. Further studies are required to determine the mechanism by which dual‐IF protein expression alters other cytoskeletal or cell surface receptor protein components important in the process of astrocytoma invasion.


American Journal of Pathology | 2000

Expression of p57KIP2 Potently Blocks the Growth of Human Astrocytomas and Induces Cell Senescence

Atsushi Tsugu; Keiichi Sakai; Peter Dirks; Shin Jung; Rosanna Weksberg; Yan-Ling Fei; Soma Mondal; Stacey Ivanchuk; Cameron Ackerley; Paul A. Hamel; James T. Rutka

Astrocytic tumors frequently exhibit defects in the expression or activity of proteins that control cell-cycle progression. Inhibition of kinase activity associated with cyclin/cyclin-dependent kinase co-complexes by cyclin-dependent kinase inhibitors is an important mechanism by which the effects of growth signals are down-regulated. We undertook the present study to determine the role of p57(KIP2) (p57) in human astrocytomas. We demonstrate here that whereas p57 is expressed in fetal brain tissue, specimens of astrocytomas of varying grade and permanent astrocytoma cell lines do not express p57, and do not contain mutations of the p57 gene by multiplex-heteroduplex analysis. However, the inducible expression of p57 in three well-characterized human astrocytoma cell lines (U343 MG-A, U87 MG, and U373 MG) using the tetracycline repressor system leads to a potent proliferative block in G(1) as determined by growth curve and flow cytometric analyses. After the induction of p57, retinoblastoma protein, p107, and E2F-1 levels diminish, and retinoblastoma protein is shifted to a hypophosphorylated form. Morphologically, p57-induced astrocytoma cells became large and flat with an expanded cytoplasm. The inducible expression of p57 leads to the accumulation of senescence-associated beta-galactosidase marker within all astrocytoma cell lines such that approximately 75% of cells were positive at 1 week after induction. Induction of p57 in U373 astrocytoma cells generated a small population of cells ( approximately 15%) that were nonviable, contained discrete nuclear fragments on Hoechst 33258 staining, and demonstrated ultrastructural features characteristic of apoptosis. Examination of bax and poly-(ADP ribose) polymerase levels showed no change in bax, but decreased expression of poly-(ADP ribose) polymerase after p57 induction in all astrocytoma cell lines. These data demonstrate that the proliferative block imposed by p57 on human astrocytoma cells results in changes in the expression of a number of cell cycle regulatory factors, cell morphology, and a strong stimulus to cell senescence.


Journal of Neuro-oncology | 2001

The INK4A/ARF Locus: Role in Cell Cycle Control and Apoptosis and Implications for Glioma Growth

Stacey Ivanchuk; Soma Mondal; Peter Dirks; James T. Rutka

The unique INK4A/ARF locus at chromosome 9p21 encodes two distinct proteins that intimately link the pRB and p53 tumour suppressor pathways. p16INK4A has been identified as an inhibitor of the cell cycle, capable of inducing arrest in G1 phase. p14/p19ARF on the other hand can induce both G1 and G2 arrest due to its stabilizing effects on the p53 transcription factor. In addition to their roles in growth arrest, both proteins are involved in cellular senescence and apoptosis. The frequent mutation or deletion of INK4A/ARF in human tumours as well as the occurence of tumours in the murine knockout models have identified both p16 and ARF as bona fide tumour suppressors.


Molecular Cell | 2010

The ARF Tumor Suppressor Controls Ribosome Biogenesis by Regulating the RNA Polymerase I Transcription Factor TTF-I

Frédéric Lessard; Françoise Morin; Stacey Ivanchuk; Frédéric Langlois; Victor Y. Stefanovsky; James T. Rutka; Tom Moss

The p14/p19(ARF) (ARF) product of the CDKN2A gene displays tumor suppressor activity both in the presence and absence of p53/TP53. In p53-negative cells, ARF arrests cell proliferation, at least in part, by suppressing ribosomal RNA synthesis. We show that ARF does this by controlling the subnuclear localization of the RNA polymerase I transcription termination factor, TTF-I. TTF-I shuttles between nucleoplasm and nucleolus with the aid of the chaperone NPM/B23 and a nucleolar localization sequence within its N-terminal regulatory domain. ARF inhibits nucleolar import of TTF-I by binding to this nucleolar localization sequence, causing the accumulation of TTF-I in the nucleoplasm. Depletion of TTF-I recapitulates the effects of ARF on ribosomal RNA synthesis and is rescued by the introduction of a TTF-I transgene. Thus, our data delineate the pathway by which ARF regulates ribosomal RNA synthesis and provide a compelling explanation for the role of NPM.


Journal of Neuropathology and Experimental Neurology | 1999

Astrocytoma Adhesion to Extracellular Matrix: Functional Significance of Integrin and Focal Adhesion Kinase Expression

James T. Rutka; Matthew P. Muller; Sherri Lynn Hubbard; Jennifer Forsdike; Peter Dirks; Shin Jung; Atsushi Tsugu; Stacey Ivanchuk; Penny Costello; Soma Mondal; Cameron Ackerley; Laurence E. Becker

Evidence is accumulating implicating a role for integrins in the pathogenesis of cancer, a disease in which alterations in cellular growth, differentiation, and adhesive characteristics are defining features. In the present report we studied a panel of 8 human astrocytoma cell lines for their expression of integrin subunits by RT-PCR, and of integrin heterodimers by immunoprecipitation analyses. The functionality of integrin heterodimers was assessed using cell attachment assays to plastic or single matrix substrates. Downstream effects of integrin activation were studied by western blot analyses of FAK expression in human astrocytoma cell lines growing on plastic and on a fibronectin matrix, and in 13 primary human brain tumor specimens of varying histopathological grade. Furthermore, we studied tyrosine phosphorylation of FAK in astrocytoma cells growing on plastic versus fibronectin. Finally, we analyzed the effects of intermediate filament gene transfer on FAK phosphorylation in SF-126 astrocytoma cells. Our data show that astrocytoma cell lines express various integrin subunits by RT-PCR, and heterodimers by immunoprecipitation analyses. The beta1 and alphav integrin subunits were expressed by all astrocytoma cell lines. The alpha3 subunit was expressed by all cell lines except SF-188. By immunoprecipitation, the fibronectin receptor (alpha5beta1 integrin heterodimer) and the vitronectin receptor (alphavbeta3) were identified in several cell lines. Astrocytoma cell attachment studies to human matrix proteins suggested that these integrin heterodimers were functional. Using confocal laser microscopy, we showed that FAK was colocalized to actin stress fibers at sites of focal adhesion complexes. By western blot, FAK was variably but quite ubiquitously expressed in human astrocytoma cell lines, and in several primary human astrocytoma specimens. When U373 and U87 MG astrocytoma cells bind to a fibronectin matrix, FAK is phosphorylated. GFAP-transfected SF-126 human astrocytoma cells were shown to overexpress the phosphorylated form of FAK only when these cells were placed on a fibronectin matrix. This result is of interest because it suggests that manipulations of the astrocytoma cytoskeleton per se can bring about potential signaling changes that channel through integrins and focal adhesion sites leading to activation of key kinases such as FAK.


Neurosurgery | 2004

The Cell Cycle: Accelerators, Brakes, and Checkpoints

Stacey Ivanchuk; James T. Rutka

PROLIFERATIVE CUES TRIGGER a complex series of molecular signaling events in cells. Early in the cell cycle, cells are faced with an important decision that affects their fate. They either initiate a round of replication or they withdraw from cell division. Passage through the restriction point, or “point of no return,” marks cellular commitment to a new round of division. Genetic mutations that predispose individuals to tumorigenesis often affect pathways that influence cellular proliferation. Many of the mutated genes give rise to molecules that are no longer able to appropriately regulate the mammalian cell cycle; the end result is neoplasia. In this review, the critical elements that permit cell cycle progression and the positive and negative regulators that affect the process are reviewed.


American Journal of Pathology | 2012

ECT2 and RASAL2 Mediate Mesenchymal-Amoeboid Transition In Human Astrocytoma Cells

Adrienne Weeks; Nadia Okolowsky; Brian Golbourn; Stacey Ivanchuk; Christian A. Smith; James T. Rutka

Malignant astrocytomas are highly invasive brain tumors. The Rho family of cytoskeletal GTPases are key regulators of astrocytoma migration and invasion; expression of the guanine nucleotide exchange factor ECT2 is elevated in primary astrocytomas and predicts both survival and malignancy. Mice bearing orthotopically implanted astrocytoma cells with diminished ECT2 levels following ECT2 knockdown exhibit longer survival. Although ECT2 is normally expressed in the nucleus, we show that ECT2 is aberrantly localized to the cytoplasm in both astrocytoma cell lines and primary human astrocytomas, and colocalizes with RAC1 and CDC42 at the leading edge of migrating astrocytoma cells. Inhibition of ECT2 expression by RNA interference resulted in decreased RAC1 and CDC42 activity, but no change in RHO activity, suggesting that ECT2 is capable of activating these pro-migratory Rho family members. ECT2 overexpression in astrocytoma cells resulted in a transition to an amoeboid phenotype that was abolished with the ROCK inhibitor, Y-27632. Cytoplasmic fractionation of astrocytoma cells followed by ECT2 immunoprecipitation and mass spectrometry were used to identify protein-binding partners that modulate the activity of ECT2 toward RAC1 and RHO/ROCK. We identified RASAL2 as an ECT2-interacting protein that regulates RHO activity in astrocytoma cells. RASAL2 knockdown leads to a conversion to an amoeboid phenotype. Our studies reveal that ECT2 has a novel role in mesenchymal-amoeboid transition in human astrocytoma cells.


Genes & Cancer | 2011

Role of the Cofilin Activity Cycle in Astrocytoma Migration and Invasion

Shoichi Nagai; Orlando Moreno; Christian A. Smith; Stacey Ivanchuk; Rocco Romagnuolo; Brian Golbourn; Adrienne Weeks; Ho Jun Seol; James T. Rutka

The cofilin pathway plays a central role in the regulation of actin polymerization and the formation of cell membrane protrusions that are essential for cell migration. Overexpression of cofilin has been linked to the aggressiveness of a variety of different cancers. In these cancers, the phosphorylation of cofilin at Ser3 is a key regulatory mechanism modulating cofilin activity. The activation status of cofilin has been directly linked to tumor invasion. Accordingly, in this study, we examined the expression of cofilin and its activation status in astrocytoma cell lines and astrocytic tumors. We show that cofilin expression was increased and correlated with increasing grade malignant astrocytoma. In addition, both cofilin and LIMK had elevated expression in astrocytoma cell lines. Knockdown of cofilin by siRNA altered astrocytoma cell morphology and inhibited astrocytoma migration and invasion. Conversely, overexpression of a cofilin phosphorylation mutant in an in vivo intracranial xenograft model resulted in a more highly invasive phenotype than those xenographs expressing wild-type cofilin. Animals harboring astrocytomas stably expressing the cofilin phosphorylation mutant (cofilin-S3A) demonstrated marked local invasiveness and spread across the corpus callosum to the contralateral hemisphere in all animals. Taken together, these data indicate that the cofilin activity pathway may represent a novel therapeutic target to diminish the invasion of these highly malignant tumors.


European Journal of Cell Biology | 1998

CHARACTERIZATION OF GLIAL FILAMENT-CYTOSKELETAL INTERACTIONS IN HUMAN ASTROCYTOMAS : AN IMMUNO-ULTRASTRUCTURAL ANALYSIS

James T. Rutka; Cameron Ackerley; Sherri Lynn Hubbard; Aina Tilup; Peter Dirks; Shin Jung; Stacey Ivanchuk; Masanori Kurimoto; Atsushi Tsugu; Laurence E. Becker

The role that glial filaments play in cells and tumors of glial origin is not well understood. We therefore undertook the present study to determine the relationships between glial and vimentin intermediate filaments (IFs), actin microfilaments, and CD44, a cell surface glycoprotein important in cell migration and invasion, in human astrocytoma cells. Three astrocytoma cell lines, U343 MG-A (U343), U251 MG (U251), and antisense GFAP-transfected U251 (asU251) were studied using immunofluorescence confocal and immunoelectron microscopy. Furthermore, we studied the phenotypic behaviour of these astrocytoma cell lines by analyzing their migration through Matrigel in vitro. U343 astrocytoma cells had the highest expression levels of glial fibrillary acidic protein (GFAP), whereas asU251 had virtually no expression of GFAP. Parental U251 cells had intermediate expression levels of GFAP. The elimination of GFAP expression in as U251 cells was accompanied by a marked increase in vimentin, actin microfilaments and CD44 levels. Gold labeling density counts of cytoskeletal and cell surface elements demonstrated that the differences between GFAP, actin, CD44 and vimentin levels in the different astrocytoma cell lines were statistically significant (p < 0.05). Results from the in vitro invasion assay revealed that U343 cells demonstrated the least invasive potential, whereas asU251 astrocytoma cells demonstrated the most. Our results show that elimination of GFAP expression by antisense leads to marked alterations in cell morphology and phenotypic behaviour. These data imply that GFAP may be linked spatially and functionally to cytoskeletal elements which may be altered when this IF is deleted in astrocytomas.


Glia | 2007

Sloppy paired 1/2 regulate glial cell fates by inhibiting Gcm Function

Soma Mondal; Stacey Ivanchuk; James T. Rutka; Gabrielle L. Boulianne

Organization of the central nervous system during embryonic development is an intricate process involving a host of molecular players. The Drosophila segmentation genes, sloppy paired (slp) 1/2 have been shown to be necessary for development of a neuronal precursor cell subtype, the NB4‐2 cells. Here, we show that slp1/2 also have roles in regulating glial cell fates. Using slp1/2 loss‐of‐function mutants, we show an increase in glial cell markers, glial cells missing (gcm) and reversed polarity. In contrast, misexpression of either slp1 or slp2 causes downregulation of glial cell‐specific genes and alters the fate of glial and neuronal cells. Furthermore, we demonstrate that Slp1 and its mammalian ortholog, Foxg1, inhibit Gcm transcriptional activity as well as bind Gcm. Taken together, these data show that Slp1/Foxg1 regulate glial cell fates by inhibiting Gcm function.

Collaboration


Dive into the Stacey Ivanchuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin Jung

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge