Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey L. Harmer is active.

Publication


Featured researches published by Stacey L. Harmer.


Nature | 2007

Rhythmic growth explained by coincidence between internal and external cues

Kazunari Nozue; Michael F. Covington; Paula D. Duek; Séverine Lorrain; Christian Fankhauser; Stacey L. Harmer; Julin N. Maloof

Most organisms use circadian oscillators to coordinate physiological and developmental processes such as growth with predictable daily environmental changes like sunrise and sunset. The importance of such coordination is highlighted by studies showing that circadian dysfunction causes reduced fitness in bacteria and plants, as well as sleep and psychological disorders in humans. Plant cell growth requires energy and water—factors that oscillate owing to diurnal environmental changes. Indeed, two important factors controlling stem growth are the internal circadian oscillator and external light levels. However, most circadian studies have been performed in constant conditions, precluding mechanistic study of interactions between the clock and diurnal variation in the environment. Studies of stem elongation in diurnal conditions have revealed complex growth patterns, but no mechanism has been described. Here we show that the growth phase of Arabidopsis seedlings in diurnal light conditions is shifted 8–12 h relative to plants in continuous light, and we describe a mechanism underlying this environmental response. We find that the clock regulates transcript levels of two basic helix–loop–helix genes, phytochrome-interacting factor 4 (PIF4) and PIF5, whereas light regulates their protein abundance. These genes function as positive growth regulators; the coincidence of high transcript levels (by the clock) and protein accumulation (in the dark) allows them to promote plant growth at the end of the night. Thus, these two genes integrate clock and light signalling, and their coordinated regulation explains the observed diurnal growth rhythms. This interaction may serve as a paradigm for understanding how endogenous and environmental signals cooperate to control other processes.


Annual Review of Plant Biology | 2009

The Circadian System in Higher Plants

Stacey L. Harmer

The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.


Genome Biology | 2008

Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development

Michael F. Covington; Julin N. Maloof; Marty Straume; Steve A. Kay; Stacey L. Harmer

BackgroundAs nonmotile organisms, plants must rapidly adapt to ever-changing environmental conditions, including those caused by daily light/dark cycles. One important mechanism for anticipating and preparing for such predictable changes is the circadian clock. Nearly all organisms have circadian oscillators that, when they are in phase with the Earths rotation, provide a competitive advantage. In order to understand how circadian clocks benefit plants, it is necessary to identify the pathways and processes that are clock controlled.ResultsWe have integrated information from multiple circadian microarray experiments performed on Arabidopsis thaliana in order to better estimate the fraction of the plant transcriptome that is circadian regulated. Analyzing the promoters of clock-controlled genes, we identified circadian clock regulatory elements correlated with phase-specific transcript accumulation. We have also identified several physiological pathways enriched for clock-regulated changes in transcript abundance, suggesting they may be modulated by the circadian clock.ConclusionOur analysis suggests that transcript abundance of roughly one-third of expressed A. thaliana genes is circadian regulated. We found four promoter elements, enriched in the promoters of genes with four discrete phases, which may contribute to the time-of-day specific changes in the transcript abundance of these genes. Clock-regulated genes are over-represented among all of the classical plant hormone and multiple stress response pathways, suggesting that all of these pathways are influenced by the circadian clock. Further exploration of the links between the clock and these pathways will lead to a better understanding of how the circadian clock affects plant growth and leads to improved fitness.


Current Biology | 2005

Overlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock

Eva M. Farré; Stacey L. Harmer; Frank G. Harmon; Marcelo J. Yanovsky; Steve A. Kay

The core mechanism of the circadian oscillators described to date rely on transcriptional negative feedback loops with a delay between the negative and the positive components . In plants, the first suggested regulatory loop involves the transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CAB EXPRESSION 1 (TOC1/PRR1). TOC1 is a member of the Arabidopsis circadian-regulated PRR gene family . Analysis of single and double mutants in PRR7 and PRR9 indicates that these morning-expressed genes play a dual role in the circadian clock, being involved in the transmission of light signals to the clock and in the regulation of the central oscillator. Furthermore, CCA1 and LHY had a positive effect on PRR7 and PRR9 expression levels, indicating that they might form part of an additional regulatory feedback loop. We propose that the Arabidopsis circadian oscillator is composed of several interlocking positive and negative feedback loops, a feature of clock regulation that appears broadly conserved between plants, fungi, and animals.


PLOS Biology | 2007

The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis

Michael F. Covington; Stacey L. Harmer

The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day–specific sensitivity, with likely important consequences for plant growth and environmental responses.


PLOS Genetics | 2005

Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

Justin W. Walley; Sean J. Coughlan; Matthew E. Hudson; Michael F. Covington; Roy Kaspi; Gopalan Banu; Stacey L. Harmer; Katayoon Dehesh

Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation.


The Plant Cell | 2005

Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis

Stacey L. Harmer; Steve A. Kay

The circadian clock exerts a major influence on transcriptional regulation in plants and other organisms. We have previously identified a motif called the evening element (EE) that is overrepresented in the promoters of evening-phased genes. Here, we demonstrate that multimerized EEs are necessary and sufficient to confer evening-phased circadian regulation. Although flanking sequences are not required for EE function, they can modulate EE activity. One flanking sequence, taken from the PSEUDORESPONSE REGULATOR 9 promoter, itself confers dawn-phased rhythms and has allowed us to define a new clock promoter motif (the morning element [ME]). Scanning mutagenesis reveals that both activators and repressors of gene expression act through the ME and EE. Although our experiments confirm that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are likely to act as repressors via the EE, they also show that they have an unexpected positive effect on EE-mediated gene expression as well. We have identified a clock-regulated activity in plant extracts that binds specifically to the EE and has a phase consistent with it being an activator of expression through the EE. This activity is reduced in CCA1/LHY null plants, suggesting it may itself be part of a circadian feedback loop and perhaps explaining the reduction in EE activity in these double mutant plants.


Trends in Plant Science | 2014

Wheels within wheels: the plant circadian system

Polly Yingshan Hsu; Stacey L. Harmer

Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.


Plant Physiology | 2006

GIGANTEA Acts in Blue Light Signaling and Has Biochemically Separable Roles in Circadian Clock and Flowering Time Regulation

Ellen L. Martin-Tryon; Joel A. Kreps; Stacey L. Harmer

Circadian clocks are widespread in nature. In higher plants, they confer a selective advantage, providing information regarding not only time of day but also time of year. Forward genetic screens in Arabidopsis (Arabidopsis thaliana) have led to the identification of many clock components, but the functions of most of these genes remain obscure. To identify both new constituents of the circadian clock and new alleles of known clock-associated genes, we performed a mutant screen. Using a clock-regulated luciferase reporter, we isolated new alleles of ZEITLUPE, LATE ELONGATED HYPOCOTYL, and GIGANTEA (GI). GI has previously been reported to function in red light signaling, central clock function, and flowering time regulation. Characterization of this and other GI alleles has helped us to further define GI function in the circadian system. We found that GI acts in photomorphogenic and circadian blue light signaling pathways and is differentially required for clock function in constant red versus blue light. Gene expression and epistasis analyses show that TIMING OF CHLOROPHYLL A/B BINDING PROTEIN1 (TOC1) expression is not solely dependent upon GI and that GI expression is only indirectly affected by TOC1, suggesting that GI acts both in series with and in parallel to TOC1 within the central circadian oscillator. Finally, we found that the GI-dependent promotion of CONSTANS expression and flowering is intact in a gi mutant with altered circadian regulation. Thus GI function in the regulation of a clock output can be biochemically separated from its role within the circadian clock.


Proceedings of the National Academy of Sciences of the United States of America | 2009

REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.

Reetika Rawat; Jacob T. Schwartz; Matthew A. Jones; Ilkka Sairanen; Youfa Cheng; Carol R. Andersson; Yunde Zhao; Karin Ljung; Stacey L. Harmer

The circadian clock modulates expression of a large fraction of the Arabidopsis genome and affects many aspects of plant growth and development. We have discovered one way in which the circadian system regulates hormone signaling, identifying a node that links the clock and auxin networks. Auxin plays key roles in development and responses to environmental cues, in part through regulation of plant growth. We have characterized REVEILLE1 (RVE1), a Myb-like, clock-regulated transcription factor that is homologous to the central clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Despite this homology, inactivation of RVE1 does not affect circadian rhythmicity but instead causes a growth phenotype, indicating this factor is a clock output affecting plant development. CCA1 regulates growth via the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5, but RVE1 acts independently of these genes. RVE1 instead controls auxin levels, promoting free auxin production during the day but having no effect during the night. RVE1 positively regulates the expression of the auxin biosynthetic gene YUCCA8 (YUC8), providing a mechanism for its growth-promoting effects. RVE1 is therefore a node that connects two important signaling networks that coordinate plant growth with rhythmic changes in the environment.

Collaboration


Dive into the Stacey L. Harmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve A. Kay

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazunari Nozue

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge