Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey M. Anderson is active.

Publication


Featured researches published by Stacey M. Anderson.


Diabetes | 2012

Fully Integrated Artificial Pancreas in Type 1 Diabetes: Modular Closed-Loop Glucose Control Maintains Near Normoglycemia

Marc D. Breton; Anne Farret; Daniela Bruttomesso; Stacey M. Anderson; Lalo Magni; Stephen D. Patek; Chiara Dalla Man; Jerome Place; Susan Demartini; Simone Del Favero; Chiara Toffanin; Colleen Hughes-Karvetski; Eyal Dassau; Howard Zisser; Francis J. Doyle; Giuseppe De Nicolao; Angelo Avogaro; Claudio Cobelli; Eric Renard; Boris P. Kovatchev

Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9–10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.


Journal of diabetes science and technology | 2010

Multinational Study of Subcutaneous Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus: Summary of the Results

Boris P. Kovatchev; Claudio Cobelli; Eric Renard; Stacey M. Anderson; Marc D. Breton; Stephen D. Patek; William L. Clarke; Daniela Bruttomesso; Alberto Maran; Silvana Costa; Angelo Avogaro; Chiara Dalla Man; Andrea Facchinetti; Lalo Magni; Giuseppe De Nicolao; Jerome Place; Anne Farret

Background: In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM). Methods: The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two sessions was that insulin dosing was performed by the patient under a physicians supervision during open loop, whereas insulin dosing was performed by a control algorithm during closed loop. Results: In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective system development, testing, and regulatory approvals in the United States, Italy, and France. In the clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below 3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03). Conclusions: In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves the overnight regulation of diabetes.


Journal of diabetes science and technology | 2009

Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the Virginia experience.

William L. Clarke; Stacey M. Anderson; Marc D. Breton; Stephen D. Patek; Laurissa Kashmer; Boris P. Kovatchev

Background: Recent progress in the development of clinically accurate continuous glucose monitors (CGMs), automated continuous insulin infusion pumps, and control algorithms for calculating insulin doses from CGM data have enabled the development of prototypes of subcutaneous closed-loop systems for controlling blood glucose (BG) levels in type 1 diabetes. The use of a new personalized model predictive control (MPC) algorithm to determine insulin doses to achieve and maintain BG levels between 70 and 140 mg/dl overnight and to control postprandial BG levels is presented. Methods: Eight adults with type 1 diabetes were studied twice, once using their personal open-loop systems to control BG overnight and for 4 h following a standardized meal and once using a closed-loop system that utilizes the MPC algorithm to control BG overnight and for 4 h following a standardized meal. Average BG levels, percentage of time within BG target of 70–140 mg/dl, number of hypoglycemia episodes, and postprandial BG excursions during both study periods were compared. Results: With closed-loop control, once BG levels achieved the target range (70–140 mg/dl), they remained within that range throughout the night in seven of the eight subjects. One subject developed a BG level of 65 mg/dl, which was signaled by the CGM trend analysis, and the MPC algorithm directed the discontinuance of the insulin infusion. The number of overnight hypoglycemic events was significantly reduced (p = .011) with closed-loop control. Postprandial BG excursions were similar during closed-loop and open-loop control Conclusion: Model predictive closed-loop control of BG levels can be achieved overnight and following a standardized breakfast meal. This “artificial pancreas” controls BG levels as effectively as patient-directed open-loop control following a morning meal but is significantly superior to open-loop control in preventing overnight hypoglycemia.


Diabetes Care | 2014

Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas

Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Lloyd B. Mize; Anne Farret; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Federico Boscari; Silvia Galasso; Angelo Avogaro; Lalo Magni; Federico Di Palma; Chiara Toffanin; Mirko Messori; Eyal Dassau; Francis J. Doyle

OBJECTIVE We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)—a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS The primary outcome—reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)—resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9–10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.


Diabetes Care | 2013

Feasibility of Outpatient Fully Integrated Closed-Loop Control First studies of wearable artificial pancreas

Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Anne Farret; Marie-Josée Pelletier; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Roberto Visentin; Alessio Filippi; Rachele Scotton; Angelo Avogaro; Francis J. Doyle

OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.


Growth Hormone & Igf Research | 2001

NEUROPHYSIOLOGICAL REGULATION AND TARGET-TISSUE IMPACT OF THE PULSATILE MODE OF GROWTH HORMONE SECRETION IN THE HUMAN

Johannes D. Veldhuis; Stacey M. Anderson; Nikhita Shah; Megan J. Bray; Tara Vick; Angela Gentili; Thomas Mulligan; Michael L. Johnson; Arthur Weltman; William S. Evans; Ali Iranmanesh

Neuroendocrine axes function as an ensemble of regulatory loci which communicate and maintain homeostasis via time-delayed blood-borne signals. The growth hormone (GH)-insulin-like growth factor I (IGF-I) feedback axis sustains a vividly pulsatile mode of interglandular signalling. Pulsatility is driven jointly by hypothalamic GH-releasing hormone (GHRH) and GH-releasing peptide (GHRP), and modulated by somatostatinergic restraint. Paradoxically, intermittent somatostatin inputs also facilitate somatotrope-cell responses to recurrent secretagogue stimuli, thereby amplifying pulsatile GH secretion. A concurrent low basal (8-12% of normal total) rate of GH release is controlled positively by GHRH and GHRP and negatively by somatostatin. Sex-steroid hormones (such as oestradiol and aromatizable androgen) and normal female and male puberty augment GH secretory-burst mass 1.8- to 3.5-fold, whereas ageing, relative obesity, physical inactivity, hypogonadism, and hypopituitarism mute the amplitude/mass of pulsatile GH output. An abrupt rise in circulating GH concentration stimulates rapid internalization of the GH receptor in peripheral target tissues, and evokes second-messenger nuclear signalling via the STAT 5b pathway. Discrete GH peaks stimulate linear (skeletal) growth and drive muscle IGF-I gene expression more effectually than basal (time-invariant) GH exposure. A brief pulse of GH can saturate the plasma GH-binding protein system and achieve prolonged plasma GH concentrations by convolution with peripheral distribution and clearance mechanisms. A single burst of GH secretion also feeds back after a short latency on central nervous system (CNS) regulatory centres via specific brain GH receptors to activate somatostatinergic and reciprocally subdue GHRH outflow. This autoregulatory loop probably contributes to the time-dependent physiologically pulsatile dynamics of the GH axis. More slowly varying systemic IGF-I concentrations may also damp GH secretory pulse amplitude by delayed negative-feedback actions. According to this simplified construct, GH pulsatility emerges due to time-ordered multivalent interfaces among GHRH/GHRP feedforward and somatostatin, GH and IGF-I feedback signals. Resultant GH pulses trigger tissue-specific gene expression, thereby promoting skeletal and muscular growth, metabolic and body compositional adaptations, and CNS reactions that jointly maintain health and homeostasis.


Diabetes Care | 2016

Multinational Home Use of Closed-Loop Control Is Safe and Effective

Stacey M. Anderson; Dan Raghinaru; Jordan E. Pinsker; Federico Boscari; Eric Renard; Bruce Buckingham; Revital Nimri; Francis J. Doyle; Sue A. Brown; Patrick Keith-Hynes; Marc D. Breton; Daniel Chernavvsky; Wendy C. Bevier; Paige K. Bradley; Daniela Bruttomesso; Simone Del Favero; Roberta Calore; Claudio Cobelli; Angelo Avogaro; Anne Farret; Jerome Place; Trang T. Ly; Satya Shanmugham; Moshe Phillip; Eyal Dassau; Isuru Dasanayake; Craig Kollman; John Lum; Roy W. Beck; Boris P. Kovatchev

OBJECTIVE To evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS At six clinical centers in four countries, 30 participants 18–66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP. RESULTS Glycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70–180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively. CONCLUSIONS CLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.


Archive | 1999

Proposed Mechanisms of Sex-Steroid— Hormone Neuromodulation of the Human GH—IGF-I Axis

Johannes D. Veldhuis; William S. Evans; Nikhita Shah; E. Shannon Story; Megan J. Bray; Stacey M. Anderson

Sex-steroid hormones are integral to pubertal development in boys and girls, and sustain sexual function and body composition throughout the human lifetime (1–14). A corollary tenet of human physiology in both the male and female is that sex steroids interact with the growth-promoting GH—IGF-I axis at multiple loci of control (15–17). Although this presentation focuses on the hypothalamopituitary actions of estrogen and androgen in modulating output of the GH—IGF-I axis, other important sites of sex-steroid-GH interplay also operate in health and disease, such as at the levels of the gonad, the IGF- I-binding proteins, GH-receptor expression, and target tissues such as fat, muscle, and bone (18). Extensive experimental data in the rodent further establish sex-steroid-GH axis interactions throughout the pre- and postpu- bertal lifetimes (19,20). The present symposial update primarily highlights issues explored recently in human-based investigations of sex hormone—GH axis interactions. We also identify some of the exciting and as yet unad- dressed challenges within this clinical neuroendocrine theme.


Diabetes Technology & Therapeutics | 2014

Multicenter closed-loop/hybrid meal bolus insulin delivery with type 1 diabetes.

H. Peter Chase; Francis J. Doyle; Howard Zisser; Eric Renard; Revital Nimri; Claudio Cobelli; Bruce Buckingham; David M. Maahs; Stacey M. Anderson; Lalo Magni; John Lum; Peter Calhoun; Craig Kollman; Roy W. Beck

BACKGROUND This study evaluated meal bolus insulin delivery strategies and associated postprandial glucose control while using an artificial pancreas (AP) system. SUBJECTS AND METHODS This study was a multicenter trial in 53 patients, 12-65 years of age, with type 1 diabetes for at least 1 year and use of continuous subcutaneous insulin infusion for at least 6 months. Four different insulin bolus strategies were assessed: standard bolus delivered with meal (n=51), standard bolus delivered 15 min prior to meal (n=40), over-bolus of 30% delivered with meal (n=40), and bolus purposely omitted (n=46). Meal carbohydrate (CHO) intake was 1 g of CHO/kg of body weight up to a maximum of 100 g for the first three strategies or up to a maximum of 50 g for strategy 4. RESULTS Only three of 177 meals (two with over-bolus and one with standard bolus 15 min prior to meal) had postprandial blood glucose values of <60 mg/dL. Postprandial hyperglycemia (blood glucose level >180 mg/dL) was prolonged for all four bolus strategies but was shorter for the over-bolus (41% of the 4-h period) than the two standard bolus strategies (73% for each). Mean postprandial blood glucose level was 15.9 mg/dL higher for the standard bolus with meal compared with the prebolus (baseline-adjusted, P=0.07 for treatment effect over the 4-h period). CONCLUSIONS The AP handled the four bolus situations safely, but at the expense of having elevated postprandial glucose levels in most subjects. This was most likely secondary to suboptimal performance of the algorithm.


Diabetes Care | 2010

Type 1 Diabetic Drivers With and Without a History of Recurrent Hypoglycemia–Related Driving Mishaps Physiological and performance differences during euglycemia and the induction of hypoglycemia

Daniel J. Cox; Boris P. Kovatchev; Stacey M. Anderson; William L. Clarke; Linda Gonder-Frederick

OBJECTIVE Collisions are more common among drivers with type 1 diabetes than among their nondiabetic spouses. This increased risk appears to be attributable to a subgroup of drivers with type 1 diabetes. The hypothesis tested is that this vulnerable subgroup is more at risk for hypoglycemia and its disruptive effects on driving. RESEARCH DESIGN AND METHODS Thirty-eight drivers with type 1 diabetes, 16 with (+history) and 22 without (−history) a recent history of recurrent hypoglycemia-related driving mishaps, drove a virtual reality driving simulator and watched a videotape of someone driving a simulator for 30-min periods. Driving and video testing occurred in a double-blind, randomized, crossover manner during euglycemia (5.5 mmol/l) and progressive hypoglycemia (3.9–2.5 mmol/l). Examiners were blind to which subjects were +/−history, whereas subjects were blind to their blood glucose levels and targets. RESULTS During euglycemia, +history participants reported more autonomic and neuroglycopenic symptoms (P ≤ 0.01) and tended to require more dextrose infusion to maintain euglycemia with the same insulin infusion (P < 0.09). During progressive hypoglycemia, these subjects demonstrated less epinephrine release (P = 0.02) and greater driving impairments (P = 0.03). CONCLUSIONS Findings support the speculation that there is a subgroup of type 1 diabetic drivers more vulnerable to experiencing hypoglycemia-related driving mishaps. This increased vulnerability may be due to more symptom “noise” (more symptoms during euglycemia), making it harder to detect hypoglycemia while driving; possibly greater carbohydrate utilization, rendering them more vulnerable to experiencing hypoglycemia; less hormonal counterregulation, leading to more profound hypoglycemia; and more neuroglycopenia, rendering them more vulnerable to impaired driving.

Collaboration


Dive into the Stacey M. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Renard

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge