Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey Rentschler is active.

Publication


Featured researches published by Stacey Rentschler.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Neuregulin-1 promotes formation of the murine cardiac conduction system

Stacey Rentschler; Jennifer Zander; Kathleen Meyers; Rebecca Levine; George A. Porter; Scott A. Rivkees; Gregory E. Morley; Glenn I. Fishman

The cardiac conduction system is a network of cells responsible for the rhythmic and coordinated excitation of the heart. Components of the murine conduction system, including the peripheral Purkinje fibers, are morphologically indistinguishable from surrounding cardiomyocytes, and a paucity of molecular markers exists to identify these cells. The murine conduction system develops in close association with the endocardium. Using the recently identified CCS-lacZ line of reporter mice, in which lacZ expression delineates the embryonic and fully mature conduction system, we tested the ability of several endocardial-derived paracrine factors to convert contractile cardiomyocytes into conduction-system cells as measured by ectopic reporter gene expression in the heart. In this report we show that neuregulin-1, a growth and differentiation factor essential for ventricular trabeculation, is sufficient to induce ectopic expression of the lacZ conduction marker. This inductive effect of neuregulin-1 was restricted to a window of sensitivity between 8.5 and 10.5 days postcoitum. Using the whole mouse embryo culture system, neuregulin-1 was shown to regulate lacZ expression within the embryonic heart, whereas its expression in other tissues remained unaffected. We describe the electrical activation pattern of the 9.5-days postcoitum embryonic mouse heart and show that treatment with neuregulin-1 results in electrophysiological changes in the activation pattern consistent with a recruitment of cells to the conduction system. This study supports the hypothesis that endocardial-derived neuregulins may be the major endogenous ligands responsible for inducing murine embryonic cardiomyocytes to differentiate into cells of the conduction system.


Journal of Molecular and Cellular Cardiology | 2013

Optimization of Direct Fibroblast Reprogramming to Cardiomyocytes Using Calcium Activity as a Functional Measure of Success

Russell C. Addis; Jamie L. Ifkovits; Filipa Pinto; Lori D. Kellam; Paul Esteso; Stacey Rentschler; Nicolas Christoforou; Jonathan A. Epstein; John D. Gearhart

Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persist for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods.


Biological Chemistry | 1999

The WW domain of dystrophin requires EF-hands region to interact with β-dystroglycan

Stacey Rentschler; Hillary Linn; Katrin Deininger; Mark T. Bedford; Xavier Espanel; Marius Sudol

Abstract Skeletal muscle dystrophin is a 427 kDa protein thought to act as a link between the actin cytoskeleton and the extracellular matrix. Perturbations of the dystrophin-associated complex, for example, between dystrophin and the transmembrane glycoprotein β-dystroglycan, may lead to muscular dystrophy. Previously, the cysteine-rich region and first half of the carboxy-terminal domain of dystrophin were shown to interact with β-dystroglycan through a stretch of fifteen amino acids at the carboxy-terminus of β-dystroglycan. This region of dystrophin implicated in binding β-dystroglycan contains four modular protein domains: a WW domain, two putative Ca2+-binding EF-hand motifs, and a putative zinc finger ZZ domain. The WW domain is a globular domain of 38–40 amino acids with two highly conserved tryptophan residues spaced 20–22 amino acids apart. A subset of WW domains was shown to bind ligands that contain a Pro-Pro-x-Tyr core motif (where x is any amino acid). Here we elucidate the role of the WW domain of dystrophin and surrounding sequence in binding β-dystroglycan. We show that the WW domain of dystrophin along with the EF-hand motifs binds to the carboxy-terminus of β-dystroglycan. Through site-specific mutagenesis and in vitro binding assays, we demonstrate that binding of dystrophin to the carboxyterminus of β-dystroglycan occurs via a β-dystroglycan Pro-Pro-x-Tyr core motif. Targeted mutagenesis of conserved WW domain residues reveals that the dystrophin/β-dystroglycan interaction occurs primarily through the WW domain of dystrophin. Precise mapping of this interaction could aid in therapeutic design.


Journal of Clinical Investigation | 2011

Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves

Rajan Jain; Kurt A. Engleka; Stacey Rentschler; Lauren J. Manderfield; Li Li; Lijun Yuan; Jonathan A. Epstein

Congenital anomalies of the aortic valve are common and are associated with progressive valvular insufficiency and/or stenosis. In addition, aneurysm, coarctation, and dissection of the ascending aorta and aortic arch are often associated conditions that complicate patient management and increase morbidity and mortality. These associated aortopathies are commonly attributed to turbulent hemodynamic flow through the malformed valve leading to focal defects in the vessel wall. However, numerous surgical and pathological studies have identified widespread cystic medial necrosis and smooth muscle apoptosis throughout the aortic arch in affected patients. Here, we provide experimental evidence for an alternative model to explain the association of aortic vessel and valvular disease. Using mice with primary and secondary cardiac neural crest deficiencies, we have shown that neural crest contribution to the outflow endocardial cushions (the precursors of the semilunar valves) is required for late gestation valvular remodeling, mesenchymal apoptosis, and proper valve architecture. Neural crest was also shown to contribute to the smooth muscle layer of the wall of the ascending aorta and aortic arch. Hence, defects of cardiac neural crest can result in functionally abnormal semilunar valves and concomitant aortic arch artery abnormalities.


Circulation | 2012

Notch Activation of Jagged1 Contributes to the Assembly of the Arterial Wall

Lauren J. Manderfield; Frances A. High; Kurt A. Engleka; Feiyan Liu; Li Li; Stacey Rentschler; Jonathan A. Epstein

Background— Notch signaling in vascular smooth muscle precursors is required for smooth muscle differentiation. Jagged1 expression on endothelium activates Notch in vascular smooth muscle precursors including those of neural crest origin to initiate the formation of a smooth muscle layer in a maturing blood vessel. Methods and Results— Here, we show that Jagged1 is a direct Notch target in smooth muscle, resulting in a positive feedback loop and lateral induction that propagates a wave of smooth muscle differentiation during aortic arch artery development. In vivo, we show that Notch inhibition in cardiac neural crest impairs Jagged1 messenger RNA expression and results in deficient smooth muscle differentiation and resultant aortic arch artery defects. Ex vivo, Jagged1 ligand activates Notch in neural crest explants and results in activation of Jagged1 messenger RNA, a response that is blocked by Notch inhibition. We examine 15 evolutionary conserved regions within the Jagged1 genomic locus and identify a single Notch response element within the second intron. This element contains a functional Rbp-J binding site demonstrated by luciferase reporter and chromatin immunoprecipitation assays and is sufficient to recapitulate aortic arch artery expression of Jagged1 in transgenic mice. Loss of Jagged1 in neural crest impairs vascular smooth muscle differentiation and results in aortic arch artery defects. Conclusions— Taken together, these results provide a mechanism for lateral induction that allows for a multilayered smooth muscle wall to form around a nascent arterial endothelial tube and identify Jagged1 as a direct Notch target.


Biological Chemistry | 1997

USING MOLECULAR REPERTOIRES TO IDENTIFY HIGH-AFFINITY PEPTIDE LIGANDS OF THE WW DOMAIN OF HUMAN AND MOUSE YAP

Hillary Linn; Kira S. Ermekova; Stacey Rentschler; Andrew B. Sparks; Brian K. Kay; Marius Sudol

The WW domain is a globular protein domain that is involved in mediating protein-protein interaction and that ultimately participates in various intracellular signaling events. The domain binds to polyproline ligands containing the xPPxY consensus (where x signifies any amino acid, P is proline and Y is tyrosine). One of the first WW domain-ligand links that was characterized in vitro was the WW domain of Yes-Associated Protein (YAP) and its WBP-1 ligand. To further characterize this molecular interaction, we used two independent approaches, both of which focused on the mutational analysis of the WBP-1 ligand. We screened repertoires of synthetic decamer peptides containing the xPPxY core of WBP-1 in which all ten positions were sequentially replaced with the remaining amino acids. In addition, we screened decamer repertoires with all permutations of the amino acids which individually increased the binding to the WW domain of YAP, as compared to the wild type. In a parallel approach, we used a phage-displayed combinatorial peptide library biased for the presence of two consecutive prolines to study ligand preferences for the WW domain of YAP. Interestingly, these two lines of investigation converged and yielded the core sequence PPPPYP, which is preferred by the YAP-WW domain. This sequence was found within the p53 (tumor suppressor) binding protein-2, a probable cognate or alternative ligand interacting with YAP.


Journal of Clinical Investigation | 2011

Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways

Stacey Rentschler; Brett S. Harris; Laura M. Kuznekoff; Rajan Jain; Lauren J. Manderfield; Min Min Lu; Gregory E. Morley; Vickas V. Patel; Jonathan A. Epstein

Ventricular preexcitation, which characterizes Wolff-Parkinson-White syndrome, is caused by the presence of accessory pathways that can rapidly conduct electrical impulses from atria to ventricles, without the intrinsic delay characteristic of the atrioventricular (AV) node. Preexcitation is associated with an increased risk of tachyarrhythmia, palpitations, syncope, and sudden death. Although the pathology and electrophysiology of preexcitation syndromes are well characterized, the developmental mechanisms are poorly understood, and few animal models that faithfully recapitulate the human disorder have been described. Here we show that activation of Notch signaling in the developing myocardium of mice can produce fully penetrant accessory pathways and ventricular preexcitation. Conversely, inhibition of Notch signaling in the developing myocardium resulted in a hypoplastic AV node, with specific loss of slow-conducting cells expressing connexin-30.2 (Cx30.2) and a resulting loss of physiologic AV conduction delay. Taken together, our results suggest that Notch regulates the functional maturation of AV canal embryonic myocardium during the development of the specialized conduction system. Our results also show that ventricular preexcitation can arise from inappropriate patterning of the AV canal-derived myocardium.


Circulation | 2012

Myocardial Notch Signaling Reprograms Cardiomyocytes to a Conduction-Like Phenotype

Stacey Rentschler; Alberta H. Yen; Jia Lu; Nataliya B. Petrenko; Min Min Lu; Lauren J. Manderfield; Vickas V. Patel; Glenn I. Fishman; Jonathan A. Epstein

Background— Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. Methods and Results— In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system–specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. Conclusions— Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.


Annals of the New York Academy of Sciences | 2010

Notch and cardiac outflow tract development.

Rajan Jain; Stacey Rentschler; Jonathan A. Epstein

Congenital heart disease represents the most common form of human birth defect, occurring in nearly 1 in 100 live births. An increasing number of patients with these defects are surviving infancy. Approximately one‐third of congenital heart defects involve malformations of the outflow tract. Related defects are found in isolation and as part of common human syndromes. Our laboratory has investigated mechanisms of cardiac morphogenesis with particular attention to outflow tract formation. During cardiogenesis, neural crest cells interact with second heart field myocardium and endocardial cushion mesenchyme. Our recent work demonstrates that Jagged1/Notch signaling within the second heart field initiates a signaling cascade involving Fgf8, Bmp4, and downstream effectors that modulate outflow tract development and aortic arch artery patterning. Hence, complex tissue–tissue interactions and integration of multiple pathways converge to orchestrate proper patterning of the outflow region. The role of Notch signaling in adult cardiac homeostasis and disease is an area of active investigation.


Circulation Research | 2015

Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

Benjamin S. Gillers; Aditi Chiplunkar; Haytham Aly; Tomas Valenta; Konrad Basler; Vincent M. Christoffels; Igor R. Efimov; Bastiaan J. Boukens; Stacey Rentschler

Rationale: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective: To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results: We used a novel allele of &bgr;-catenin that preserves &bgr;-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff–Parkinson–White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of &bgr;-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression. Conclusions: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.

Collaboration


Dive into the Stacey Rentschler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor R. Efimov

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Rajan Jain

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditi Khandekar

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Lipovsky

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kurt A. Engleka

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Min Min Lu

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge