Stacy Jones
Jackson State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stacy Jones.
RSC Advances | 2015
Rajashekhar Kanchanapally; Bhanu Priya Viraka Nellore; Sudarson Sekhar Sinha; Francisco Pedraza; Stacy Jones; Avijit Pramanik; Suhash Reddy Chavva; Christine Tchounwou; Yongliang Shi; Aruna Vangara; Dhiraj K. Sardar; Paresh Chandra Ray
According to the World Health Organization (WHO), multiple drug-resistant (MDR) bacterial infection is a top threat to human health. Since bacteria evolve to resist antibiotics faster than scientists can develop new classes of drugs, the development of new materials which can be used, not only for separation, but also for effective disinfection of drug resistant pathogens is urgent. Driven by this need, we report for the first time the development of a nisin antimicrobial peptide conjugated, three dimensional (3D) porous graphene oxide membrane for identification, effective separation, and complete disinfection of MDR methicillin-resistant Staphylococcus aureus (MRSA) pathogens from water. Experimental data show that due to the size differences, MRSA is captured by the porous membrane, allowing only water to pass through. SEM, TEM, and fluorescence images confirm that pathogens are captured by the membrane. RT-PCR data with colony counting indicate that almost 100% of MRSA can be removed and destroyed from the water sample using the developed membrane. Comparison of MDR killing data between nisin alone, the graphene oxide membrane and the nisin attached graphene oxide membrane demonstrate that the nisin antimicrobial peptide attached graphene oxide membrane can dramatically enhance the possibility of destroying MRSA via a synergestic effect due to the multimodal mechanism.
ACS Applied Materials & Interfaces | 2015
Yongliang Shi; Avijit Pramanik; Christine Tchounwou; Francisco Pedraza; Rebecca A. Crouch; Suhash Reddy Chavva; Aruna Vangara; Sudarson Sekhar Sinha; Stacy Jones; Dhiraj K. Sardar; Craig J. Hawker; Paresh Chandra Ray
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.
Accounts of Chemical Research | 2016
Sudarson Sekhar Sinha; Stacy Jones; Avijit Pramanik; Paresh Chandra Ray
Conspectus Surface-enhanced Raman spectroscopy (SERS) fingerprinting is highly promising for identifying disease markers from complex mixtures of clinical sample, which has the capability to take medical diagnoses to the next level. Although vibrational frequency in Raman spectra is unique for each biomolecule, which can be used as fingerprint identification, it has not been considered to be used routinely for biosensing due to the fact that the Raman signal is very weak. Contemporary SERS has been demonstrated to be an excellent analytical tool for practical label-free sensing applications due its ability to enhance Raman signals by factors of up to 108–1014 orders of magnitude. Although SERS was discovered more than 40 years ago, its applications are still rare outside the spectroscopy community and it is mainly due to the fact that how to control, manipulate and amplify light on the “hot spots” near the metal surface is in the infancy stage. In this Account, we describe our contribution to develop nanoachitecture based highly reproducible and ultrasensitive detection capability SERS platform via low-cost synthetic routes. Using one-dimensional (1D) carbon nanotube (CNT), two-dimensional (2D) graphene oxide (GO), and zero-dimensional (0D) plasmonic nanoparticle, 0D to 3D SERS substrates have been designed, which represent highly powerful platform for biological diagnosis. We discuss the major design criteria we have used to develop robust SERS substrate to possess high density “hot spots” with very good reproducibility. SERS enhancement factor for 3D SERS substrate is about 5 orders of magnitude higher than only plasmonic nanoparticle and more than 9 orders of magnitude higher than 2D GO. Theoretical finite-difference time-domain (FDTD) stimulation data show that the electric field enhancement |E|2 can be more than 2 orders of magnitude in “hot spots”, which suggests that SERS enhancement factors can be greater than 104 due to the formation of high density “hot spots” in 3D substrate. Next, we discuss the utilization of nanoachitecture based SERS substrate for ultrasensitive and selective diagnosis of infectious disease organisms such as drug resistance bacteria and mosquito-borne flavi-viruses that cause significant health problems worldwide. SERS based “whole-organism fingerprints” has been used to identify infectious disease organisms even when they are so closely related that they are difficult to distinguish. The detection capability can be as low as 10 CFU/mL for methicillin-resistant Staphylococcus aureus (MRSA) and 10 PFU/mL for Dengue virus (DENV) and West Nile virus (WNV). After that, we introduce exciting research findings by our group on the applications of nanoachitecture based SERS substrate for the capture and fingerprint detection of rotavirus from water and Alzheimer’s disease biomarkers from whole blood sample. The SERS detection limit for β-amyloid (Aβ proteins) and tau protein using 3D SERS platform is several orders of magnitude higher than the currently used technology in clinics. Finally, we highlight the promises, major challenges and prospect of nanoachitecture based SERS in biomedical diagnosis field.
ACS Applied Materials & Interfaces | 2015
Christine Tchounwou; Sudarson Sekhar Sinha; Bhanu Priya Viraka Nellore; Avijit Pramanik; Rajashekhar Kanchanapally; Stacy Jones; Suhash Reddy Chavva; Paresh Chandra Ray
Despite advances in the medical field, even in the 21st century cancer is one of the leading causes of death for men and women in the world. Since the second near-infrared (NIR) biological window light between 950 and 1350 nm offers highly efficient tissue penetration, the current article reports the development of hybrid theranostic platform using anti-GD2 antibody attached gold nanoparticle (GNP) conjugated, single-wall carbon nanotube (SWCNT) for second near-IR light triggered selective imaging and efficient photothermal therapy of human melanoma cancer cell. Reported results demonstrate that due to strong plasmon-coupling, two-photon luminescence (TPL) intensity from theranostic GNP attached SWCNT materials is 6 orders of magnitude higher than GNP or SWCNT alone. Experimental and FDTD simulation data indicate that the huge enhancement of TPL intensity is mainly due to strong resonance enhancement coupled with the stronger electric field enhancement. Due to plasmon coupling, the theranostic material serves as a local nanoantennae to enhance the photothermal capability via strong optical energy absorption. Reported data show that theranostic SWCNT can be used for selective two-photon imaging of melanoma UACC903 cell using 1100 nm light. Photothermal killing experiment with 1.0 W/cm(2) 980 nm laser light demonstrates that 100% of melanoma UACC903 cells can be killed using theranostic SWCNT bind melanoma cells after just 8 min of exposure. These results demonstrate that due to plasmon coupling, the theranostic GNP attached SWCNT material serves as a two-photon imaging and photothermal source for cancer cells in biological window II.
ACS Applied Materials & Interfaces | 2016
Avijit Pramanik; Aruna Vangara; Bhanu Priya Viraka Nellore; Sudarson Sekhar Sinha; Suhash Reddy Chavva; Stacy Jones; Paresh Chandra Ray
Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial–mesenchymal transition (EMT), which is the major obstacle for CTC analysis via “liquid biopsy”. This article reports the development of a new class of multifunctional fluorescent–magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells.
ACS Omega | 2017
Avijit Pramanik; Stacy Jones; Francisco Pedraza; Aruna Vangara; Carrie Sweet; Mariah S. Williams; Vikram Ruppa-Kasani; Sean Edward Risher; Dhiraj K. Sardar; Paresh Chandra Ray
The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings.
ACS Omega | 2017
Carrie Sweet; Avijit Pramanik; Stacy Jones; Paresh Chandra Ray
Molybdenum disulfide (MoS2) quantum dots (QDs) derived from this two-dimensional (2D) transition metal dichalcogenide are emerging zero-dimensional materials that possess very good optical properties. Bioimaging using light in the biological II window (950–1350 nm) is a next-generation approach that will allow clinicians to achieve deeper tissue imaging with better image contrast and reduced phototoxicity and photobleaching. This article reports the development of a water-soluble, zero-dimensional antibody-conjugated transition metal dichalcogenide MoS2 QD-based two-photon luminescence (TPL) probe for the targeted bioimaging of cancer cells in the biological II window. The data indicates that MoS2 QDs exhibit an extremely high two-photon absorption cross-section (σ = 58960 GM) and two-photon brightness (4.7 × 103 GM) because of the quantum confinement and edge effects. Experimental data show that anti-PSMA antibody-attached MoS2 QDs can be used for selective two-photon imaging of live prostate cancer cells using 1064 nm light because of the high two-photon brightness, very good photostability, and very good biocompatibility of these MoS2 QDs. The data demonstrate that the bioconjugated MoS2 QDs can distinguish targeted and nontargeted cells. This study illuminates the high two-photon brightness mechanism of MoS2 QDs and provides a zero-dimensional transition metal dichalcogenide-based selective TPL agent for high-efficiency live cell imaging.
Journal of Environmental Science and Health, Part C | 2017
Stacy Jones; Avijit Pramanik; Carrie Sweet; Anthony Keyes; Salma Begum; Aruna Vangra; Hongtal Yu; Peter P. Fu; Paresh Chandra Ray
ABSTRACT This review summarizes recent advances on design strategies for shape-controlled anisotropic gold nanoparticles. Detailed chemical mechanism has been discussed to understand the anisotropic growth. The effect of various chemical parameters and surface facets for the formation of different shaped anisotropic nanoparticles have been addressed.
Chemistry-an Asian Journal | 2017
Paresh Chandra Ray; Avijit Pramanik; Suhash Reddy Chavva; Bhanu Priya Viraka Nellore; Kelli May; Tejus Matthew; Stacy Jones; Aruna Vangara
Even in the 21st century, prostate cancer remains the second leading cause of cancer-related death for men. Since a normal prostate gland has a high ZnII content and there are huge differences in ZnII content between healthy and malignant prostate cancer cells, mobile zinc can be used as a biomarker for prostate cancer prediction. A highly efficient surface enhanced Raman spectroscopy (SERS) probe using a p-(imidazole)azo)benzenethiol attached gold nanoparticle as a Raman reporter, which has the capability to identify prostate cancer cells based on ZnII sensing, has been designed. A facile synthesis, characterization and evaluation of a ZnII sensing Raman probe are described. Reported data indicate that after binding with ZnII , Raman reporter attached to a gold nanoparticle forms an assembly structure, which allows selective detection of ZnII even at 100 ppt concentration. Theoretical full-wave finite-difference time-domain (FDTD) simulations have been used to understand the enhancement of the SERS signal. The SERS probe is highly promising for in vivo sensing of cancer, where near-IR light can be easily used to avoid tissue autofluorescence and to enhance tissue penetration depth. Reported data show that the SERS probe can distinguish metastatic cancer cells from normal prostate cells very easily with a sensitivity as low as 5 cancer cells mL-1 . The probe can be used as a chemical toolkit for determining mobile ZnII concentrations in biological samples.
Advanced Drug Delivery Reviews | 2018
Avijit Pramanik; Stacy Jones; Ye Gao; Carrie Sweet; Aruna Vangara; Salma Begum; Paresh Chandra Ray
Abstract Even in 21st century, >90% cancer‐associated deaths are caused by metastatic disease. Circulating tumor cells (CTCs), which circulate in the blood stream after release from primary tumors, extravasate and form fatal metastases in different organs. Several clinical trials indicate that CTCs can be used as a liquid biopsy of tumors for early diagnosis of cancers. Since CTCs are extremely rare and exhibit heterogeneous biology due to epithelial‐mesenchymal transition (EMT), oncologists continue to face enormous challenges in using CTCs as a true “liquid biopsy” for cancer patients. Recent advancements in nanoscience allow us to design nano‐architectures with the capability of targeted CTCs isolation and identification. In the current review, we discuss contribution from different groups on the development of graphene oxide based nanoarchitecture for effective isolation and accurate identification of CTCs from whole blood. In the last few years, using zero‐dimensional (0D), two dimensional (2D) and three dimensional (3D) multifunctional hybrid graphene oxide (GO), different types of nanoarchitectures have been designed. These nanoarchitectures represent a highly powerful platform for CTC diagnosis. We discuss the major design criteria that have been used to develop hybrid GO nanoarchitectures for selective capture and accurate identification of heterogeneous CTCs from whole blood. At the end, we conclude with the promises, major challenges, and prospect to clinically translate the identification of CTCs using GO based nanotechnology. Graphical abstract Graphene oxide based nano‐architecture for selective separation of CTCs from blood sample and CTCs identification using multicolor fluorescence and SERS. Figure. No Caption available.