Staffan Ekvall
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Staffan Ekvall.
international conference on robotics and automation | 2005
Staffan Ekvall; Danica Kragic
The demand for flexible and re-programmable robots has increased the need for programming by demonstration systems. In this paper, grasp recognition is considered in a programming by demonstration framework. Three methods for grasp recognition are presented and evaluated. The first method uses Hidden Markov Models to model the hand posture sequence during the grasp sequence, while the second method relies on the hand trajectory and hand rotation. The third method is a hybrid method, in which both the first two methods are active in parallel. The particular contribution is that all methods rely on the grasp sequence and not just the final posture of the hand. This facilitates grasp recognition before the grasp is completed. Also, by analyzing the entire sequence and not just the final grasp, the decision is based on more information and increased robustness of the overall system is achieved. The experimental results show that both arm trajectory and final hand posture provide important information for grasp classification. By combining them, the recognition rate of the overall system is increased.
international conference on robotics and automation | 2004
Staffan Ekvall; Danica Kragic
We describe our effort in development of an artificial cognitive system, able of performing complex manipulation tasks in a teleoperated or collaborative manner. Some of the work is motivated by human control strategies that, in general, involve comparison between sensory feedback and a-priori known, internal models. According to recent neuroscientific findings, predictions help to reduce the delays in obtaining the sensory information and to perform more complex tasks. This paper deals with the issue of robotic manipulation and grasping in particular. Two main contributions of the paper are: i) evaluation, recognition and modeling of human grasps during the arm transportation sequence, and ii) learning and representation of grasp strategies for different robotic hands.
international conference on robotics and automation | 2007
Staffan Ekvall; Danica Kragic
In this paper, we address the problem of automatic grasp generation for robotic hands where experience and shape primitives are used in synergy so to provide a basis not only for grasp generation but also for a grasp evaluation process when the exact pose of the object is not available. One of the main challenges in automatic grasping is the choice of the object approach vector, which is dependent both on the object shape and pose as well as the grasp type. Using the proposed method, the approach vector is chosen not only based on the sensory input but also on experience that some approach vectors will provide useful tactile information that finally results in stable grasps. A methodology for developing and evaluating grasp controllers is presented where the focus lies on obtaining stable grasps under imperfect vision. The method is used in a teleoperation or a programming by demonstration setting where a human demonstrates to a robot how to grasp an object. The system first recognizes the object and grasp type which can then be used by the robot to perform the same action using a mapped version of the human grasping posture.
Robotica | 2007
Staffan Ekvall; Danica Kragic; Patric Jensfelt
The problem studied in this paper is a mobile robot that autonomously navigates in a domestic environment, builds a map as it moves along and localizes its position in it. In addition, the robot detects predefined objects, estimates their position in the environment and integrates this with the localization module to automatically put the objects in the generated map. Thus, we demonstrate one of the possible strategies for the integration of spatial and semantic knowledge in a service robot scenario where a simultaneous localization and mapping (SLAM) and object detection recognition system work in synergy to provide a richer representation of the environment than it would be possible with either of the methods alone. Most SLAM systems build maps that are only used for localizing the robot. Such maps are typically based on grids or different types of features such as point and lines. The novelty is the augmentation of this process with an object-recognition system that detects objects in the environment and puts them in the map generated by the SLAM system. The metric map is also split into topological entities corresponding to rooms. In this way, the user can command the robot to retrieve a certain object from a certain room. We present the results of map building and an extensive evaluation of the object detection algorithm performed in an indoor setting.
International Journal of Advanced Robotic Systems | 2008
Staffan Ekvall; Danica Kragic
In this paper, we deal with the problem of learning by demonstration, task level learning and planning for robotic applications that involve object manipulation. Preprogramming robots for execution of complex domestic tasks such as setting a dinner table is of little use, since the same order of subtasks may not be conceivable in the run time due to the changed state of the world. In our approach, we aim to learn the goal of the task and use a task planner to reach the goal given different initial states of the world. For some tasks, there are underlying constraints that must be fulfille, and knowing just the final goal is not sufficient. We propose two techniques for constraint identification. In the first case, the teacher can directly instruct the system about the underlying constraints. In the second case, the constraints are identified by the robot itself based on multiple observations. The constraints are then considered in the planning phase, allowing the task to be executed without violating any of them. We evaluate our work on a real robot performing pick-and-place tasks.
Intelligent Service Robotics | 2009
Johan Tegin; Staffan Ekvall; Danica Kragic; Jan Wikander; Boyko Iliev
We present a method for automatic grasp generation based on object shape primitives in a Programming by Demonstration framework. The system first recognizes the grasp performed by a demonstrator as well as the object it is applied on and then generates a suitable grasping strategy on the robot. We start by presenting how to model and learn grasps and map them to robot hands. We continue by performing dynamic simulation of the grasp execution with a focus on grasping objects whose pose is not perfectly known.
international conference on robotics and automation | 2005
Daniel Aarno; Staffan Ekvall; Danica Kragic
It has been demonstrated in a number of robotic areas how the use of virtual fixtures improves task performance both in terms of execution time and overall precision, [1]. However, the fixtures are typically inflexible, resulting in a degraded performance in cases of unexpected obstacles or incorrect fixture models. In this paper, we propose the use of adaptive virtual fixtures that enable us to cope with the above problems. A teleoperative or human machine collaborative setting is assumed with the core idea of dividing the task, that the operator is executing, into several subtasks. The operator may remain in each of these subtasks as long as necessary and switch freely between them. Hence, rather than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles and deviate from the model. In our system, the probability that the user is following a certain trajectory (subtask) is estimated and used to automatically adjusts the compliance. Thus, an on-line decision of how to fixture the movement is provided.
robot and human interactive communication | 2006
Staffan Ekvall; Danica Kragic
In this paper, we present a novel method for learning robot tasks from multiple demonstrations. Each demonstrated task is decomposed into subtasks that allow for segmentation and classification of the input data. The demonstrated tasks are then merged into a flexible task model, describing the task goal and its constraints. The two main contributions of the paper are the state generation and contraints identification methods. We also present a task level planner, that is used to assemble a task plan at run-time, allowing the robot to choose the best strategy depending on the current world state
intelligent robots and systems | 2006
Staffan Ekvall; Patric Jensfelt; Danica Kragic
Linking semantic and spatial information has become an important research area in robotics since, for robots interacting with humans and performing tasks in natural environments, it is of foremost importance to be able to reason beyond simple geometrical and spatial levels. In this paper, we consider this problem in a service robot scenario where a mobile robot autonomously navigates in a domestic environment, builds a map as it moves along, localizes its position in it, recognizes objects on its way and puts them in the map. The experimental evaluation is performed in a realistic setting where the main concentration is put on the synergy of object recognition and simultaneous localization and mapping systems
international conference on advanced robotics | 2005
Staffan Ekvall; Danica Kragic
Understanding and interpreting dynamic scenes and activities is a very challenging problem. In this paper, we present a system capable of learning robot tasks from demonstration. Classical robot task programming requires an experienced programmer and a lot of tedious work. In contrast, programming by demonstration is a flexible framework that reduces the complexity of programming robot tasks, and allows end-users to demonstrate the tasks instead of writing code. We present our recent steps towards this goal. A system for learning pick-and-place tasks by manually demonstrating them is presented. Each demonstrated task is described by an abstract model involving a set of simple tasks such as what object is moved, where it is moved, and which grasp type was used to move it