Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Standwell Nkhoma is active.

Publication


Featured researches published by Standwell Nkhoma.


The Lancet | 2012

Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

Aung Pyae Phyo; Standwell Nkhoma; Kasia Stepniewska; Elizabeth A. Ashley; Shalini Nair; Rose McGready; Carit Ler Moo; Salma Al-Saai; Arjen M. Dondorp; Khin Maung Lwin; Pratap Singhasivanon; Nicholas P. J. Day; Nicholas J. White; Timothy J. C. Anderson; François Nosten

Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.


Science | 2012

A Major Genome Region Underlying Artemisinin Resistance in Malaria

Ian H. Cheeseman; Becky Miller; Shalini Nair; Standwell Nkhoma; Asako Tan; John C. Tan; Salma Al Saai; Aung Pyae Phyo; Carit Ler Moo; Khin Maung Lwin; Rose McGready; Elizabeth A. Ashley; Mallika Imwong; Kasia Stepniewska; Poravuth Yi; Arjen M. Dondorp; Mayfong Mayxay; Paul N. Newton; Nicholas J. White; François Nosten; Michael T. Ferdig; Timothy J. C. Anderson

Narrowing Down Artemisinin Resistance Knowing that antimalarial drug resistance is characterized by selective sweeps and reduced diversity around resistance mutations, Cheeseman et al. (p. 79) looked for signatures of selection in a modified genome-wide association study in parasite populations from Cambodia, Laos, and Thailand. Thirty-three regions showed evidence of selection and enrichment of known antimalarial resistance genes. Fine-mapping of parasite samples taken during the past decade narrowed the association down to a 35-kb region of seven genes on chromosome 13 that seemed to explain at least 35% of the observed reduction in parasite clearance rate. However, the absence of strong candidate mutations suggests the involvement of noncoding regulatory mutations. A 35-kilobase region on chromosome 13 of Plasmodium falciparum is linked to reductions in parasite clearance in Southeast Asia. Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6969 polymorphic single-nucleotide polymorphisms (SNPs) in 91 parasites from Cambodia, Thailand, and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chromosome 13 that shows strong association (P = 10−6 to 10−12) with slow CRs, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.


The Journal of Infectious Diseases | 2010

High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia

Timothy J. C. Anderson; Shalini Nair; Standwell Nkhoma; Jeff T. Williams; Mallika Imwong; Poravuth Yi; Duong Socheat; Debashish Das; Kesinee Chotivanich; Nicholas P. J. Day; Nicholas J. White; Arjen M. Dondorp

In western Cambodia, malaria parasites clear slowly from the blood after treatment with artemisinin derivatives, but it is unclear whether this results from parasite, host, or other factors specific to this population. We measured heritability of clearance rate by evaluating patients infected with identical or nonidentical parasite genotypes, using methods analogous to human twin studies. A substantial proportion (56%-58%) of the variation in clearance rate is explained by parasite genetics. This has 2 important implications: (1) selection with artemisinin derivatives will tend to drive resistance spread and (2) because heritability is high, the genes underlying parasite clearance rate may be identified by genome-wide association.


Pediatric Infectious Disease Journal | 2007

High pneumococcal DNA loads are associated with mortality in malawian children with invasive pneumococcal disease

Enitan D. Carrol; Malcolm Guiver; Standwell Nkhoma; Limangeni Mankhambo; Marsh J; Paul Balmer; Daniel L. Banda; Graham Jeffers; Sarah A. White; Elizabeth Molyneux; Malcolm E. Molyneux; Rosalind L. Smyth; C. A. Hart

Background: In bacteremia owing to Streptococcus pneumoniae, high bacterial counts at presentation have been shown to be predictive of the development of serious invasive disease. Using real-time PCR, we aimed to determine pneumococcal DNA loads in blood and CSF, and their relationship to cytokine concentrations, clinical presentation and outcome. Methods: Children with confirmed meningitis (n = 82) or pneumonia (n = 13) were prospectively recruited, and blood and CSF samples taken for pneumococcal bacterial DNA loads and cytokine determination. Results: At the time of admission, the median bacterial load in blood was 1.6 × 103 DNA copies/mL (range 0.00–1.54 × 106) and in CSF it was 5.77 × 107 DNA copies/mL (range 4.42 × 102 to 6.15 × 108). Median blood and CSF bacterial loads (log DNA copies/mL) were significantly higher in nonsurvivors than in survivors; blood (3.80 vs. 2.97, P = 0.003), CSF (8.17 vs. 7.50, P = 0.03). In HIV-infected children (n = 59), blood and CSF loads and plasma tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6 and IL-10 were all significantly higher in nonsurvivors than in survivors, but in HIV-uninfected children (n = 36) this difference was not significant. Blood bacterial loads and plasma cytokine concentrations were significantly associated, and were all significantly higher in children with meningitis than in those with pneumonia. In children with meningitis, median CSF cytokine concentrations were significantly higher than median plasma cytokine concentrations (P < 0.001) and CSF bacterial loads were significantly associated with CSF IL-1β (P = 0.002) and IL-10 (P = 0.001) concentrations. Conclusions: Pneumococcal DNA loads are associated with plasma cytokine concentrations, and are higher in meningitis than in pneumonia. High blood and CSF pneumococcal DNA loads are associated with a fatal outcome.


Molecular Ecology | 2013

Population genetic correlates of declining transmission in a human pathogen

Standwell Nkhoma; Shalini Nair; Salma Al-Saai; Elizabeth A. Ashley; Rose McGready; Aung Pyae Phyo; François Nosten; Timothy J. C. Anderson

Pathogen control programs provide a valuable, but rarely exploited, opportunity to directly examine the relationship between population decline and population genetics. We investigated the impact of an ~12‐fold decline in transmission on the population genetics of Plasmodium falciparum infections (n = 1731) sampled from four clinics on the Thai–Burma border over 10 years and genotyped using 96 genome‐wide SNPs. The most striking associated genetic change was a reduction in the frequency of infections containing multiple parasite genotypes from 63% in 2001 to 14% in 2010 (P = 3 × 10−15). Two measures of the clonal composition of populations (genotypic richness and the β‐parameter of the Pareto distribution) declined over time as more people were infected by parasites with identical multilocus genotypes, consistent with increased selfing and a reduction in the rate at which multilocus genotypes are broken apart by recombination. We predicted that the reduction in transmission, multiple clone carriage and outbreeding would be mirrored by an increased influence of genetic drift. However, geographical differentiation and expected heterozygosity remained stable across the sampling period. Furthermore, Ne estimates derived from allele frequencies fluctuation between years remained high (582 to ∞) and showed no downward trend. These results demonstrate how genetic data can compliment epidemiological assessments of infectious disease control programs. The temporal changes in a single declining population parallel to those seen in comparisons of parasite genetics in regions of differing endemicity, strongly supporting the notion that reduced opportunity for outbreeding is the key driver of these patterns.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Close kinship within multiple-genotype malaria parasite infections

Standwell Nkhoma; Shalini Nair; Ian H. Cheeseman; Cherise Rohr-Allegrini; Sittaporn Singlam; François Nosten; Timothy J. C. Anderson

Malaria infections containing multiple parasite genotypes are ubiquitous in nature, and play a central role in models of recombination, intra-host dynamics, virulence, sex ratio, immunity and drug resistance evolution in Plasmodium. While these multiple infections (MIs) are often assumed to result from superinfection (bites from multiple infected mosquitoes), we know remarkably little about their composition or generation. We isolated 336 parasite clones from eight patients from Malawi (high transmission) and six from Thailand (low transmission) by dilution cloning. These were genotyped using 384 single-nucleotide polymorphisms, revealing 22 independent haplotypes in Malawi (2–6 per MI) and 15 in Thailand (2–5 per MI). Surprisingly, all six patients from Thailand and six of eight from Malawi contained related haplotypes, and haplotypes were more similar within- than between-infections. These results argue against a simple superinfection model. Instead, the observed kinship patterns may be explained by inoculation of multiple related haploid sporozoites from single mosquito bites, by immune suppression of parasite subpopulations within infections, and serial transmission of related parasites between people. That relatedness is maintained in endemic areas in the face of repeated bites from infected mosquitoes has profound implications for understanding malaria transmission, immunity and intra-host dynamics of co-infecting parasite genotypes.


Critical Care | 2010

The role of angiogenic factors in predicting clinical outcome in severe bacterial infection in Malawian children.

Limangeni Mankhambo; Daniel L. Banda; Graham Jeffers; Sarah A. White; Paul Balmer; Standwell Nkhoma; Happy T. Phiri; Elizabeth Molyneux; C. Anthony Hart; Malcolm E. Molyneux; Robert S. Heyderman; Enitan D. Carrol

IntroductionSevere sepsis is a disease of the microcirculation, with endothelial dysfunction playing a key role in its pathogenesis and subsequent associated mortality. Angiogenesis in damaged small vessels may ameliorate this dysfunction. The aim of the study was to determine whether the angiogenic factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and angiopoietin-1 (Ang-1) and -2 (Ang-2)) are mortality indicators in Malawian children with severe bacterial infection.MethodsIn 293 children with severe bacterial infection, plasma VEGF, PDGF, FGF, and Ang-1 and Ang-2 were measured on admission; in 50 of the children with meningitis, VEGF, PDGF, and FGF were also measured in the CSF. Healthy controls comprised children from some of the villages of the index cases. Univariable and multivariable logistic regression analyses were performed to develop a prognostic model.ResultsThe median age was 2.4 years, and the IQR, 0.7 to 6.0 years. There were 211 children with bacterial meningitis (72%) and 82 (28%) with pneumonia, and 154 (53%) children were HIV infected. Mean VEGF, PDGF, and FGF concentrations were higher in survivors than in nonsurvivors, but only PDGF remained significantly increased in multivariate analysis (P = 0.007). Mean Ang-1 was significantly increased, and Ang-2 was significantly decreased in survivors compared with nonsurvivors (6,000 versus 3,900 pg/ml, P = 0.03; and 7,700 versus 11,900 pg/ml, P = 0.02, respectively). With a logistic regression model and controlling for confounding factors, only female sex (OR, 3.95; 95% CI, 1.33 to 11.76) and low Ang-1 (OR, 0.23; 95% CI, 0.08 to 0.69) were significantly associated with mortality. In children with bacterial meningitis, mean CSF VEGF, PDGF, and FGF concentrations were higher than paired plasma concentrations, and mean CSF, VEGF, and FGF concentrations were higher in nonsurvivors than in survivors (P = 0.02 and 0.001, respectively).ConclusionsLower plasma VEGF, PDGF, FGF, and Ang-1 concentrations and higher Ang-2 concentrations are associated with an unfavorable outcome in children with severe bacterial infection. These angiogenic factors may be important in the endothelial dysregulation seen in severe bacterial infection, and they could be used as biomarkers for the early identification of patients at risk of a poor outcome.


Pharmacogenomics | 2011

How can we identify parasite genes that underlie antimalarial drug resistance

Timothy J. C. Anderson; Standwell Nkhoma; Andrea Ecker; David A. Fidock

This article outlines genome-scale approaches that can be used to identify mutations in malaria (Plasmodium) parasites that underlie drug resistance and contribute to treatment failure. These approaches include genetic mapping by linkage or genome-wide association studies, drug selection and characterization of resistant mutants, and the identification of genome regions under strong recent selection. While these genomic approaches can identify candidate resistance loci, genetic manipulation is needed to demonstrate causality. We therefore also describe the growing arsenal of available transfection approaches for direct incrimination of mutations suspected to play a role in resistance. Our intention is both to review past progress and highlight promising approaches for future investigations.


Genome Research | 2014

Single-cell genomics for dissection of complex malaria infections

Shalini Nair; Standwell Nkhoma; David Serre; Peter A. Zimmerman; Karla M. Gorena; Benjamin J. Daniel; Francxois Nosten; Timothy J. C. Anderson; Ian H. Cheeseman

Most malaria infections contain complex mixtures of distinct parasite lineages. These multiple-genotype infections (MGIs) impact virulence evolution, drug resistance, intra-host dynamics, and recombination, but are poorly understood. To address this we have developed a single-cell genomics approach to dissect MGIs. By combining cell sorting and whole-genome amplification (WGA), we are able to generate high-quality material from parasite-infected red blood cells (RBCs) for genotyping and next-generation sequencing. We optimized our approach through analysis of >260 single-cell assays. To quantify accuracy, we decomposed mixtures of known parasite genotypes and obtained highly accurate (>99%) single-cell genotypes. We applied this validated approach directly to infections of two major malaria species, Plasmodium falciparum, for which long term culture is possible, and Plasmodium vivax, for which no long-term culture is feasible. We demonstrate that our single-cell genomics approach can be used to generate parasite genome sequences directly from patient blood in order to unravel the complexity of P. vivax and P. falciparum infections. These methods open the door for large-scale analysis of within-host variation of malaria infections, and reveal information on relatedness and drug resistance haplotypes that is inaccessible through conventional sequencing of infections.


Acta Tropica | 2009

Parasites bearing a single copy of the multi-drug resistance gene (pfmdr-1) with wild-type SNPs predominate amongst Plasmodium falciparum isolates from Malawi.

Standwell Nkhoma; Shalini Nair; Mavuto Mukaka; Malcolm E. Molyneux; Stephen A. Ward; Timothy J. C. Anderson

We genotyped 160 P. falciparum infections from Malawi for pfmdr-1 copy number changes and SNPs associated with in vivo tolerance and poor in vitro sensitivity to the component drugs of Coartem. We also measured in vitro susceptibility of 49 of these isolates to a variety of drugs in clinical use or with a potential for use in Africa. All 160 infections carried a single copy of pfmdr-1 but 34% exhibited sequence variation at 4 of the 5 polymorphic sites in pfmdr-1. Isolates carrying 86-Asn and 184-Tyr pfmdr-1 alleles were significantly less sensitive (p<0.001) to mefloquine, lumefantrine, artemether and dihydroartemisinin compared with those bearing 86-Tyr and 184-Phe polymorphisms. This study provides baseline measures prior to policy change: continued surveillance for changes in baseline drug susceptibility, pfmdr-1 copy number and SNPs, and other putative Coartem resistance loci will be necessary to provide an early warning of emerging Coartem resistance in this setting.

Collaboration


Dive into the Standwell Nkhoma's collaboration.

Top Co-Authors

Avatar

Timothy J. C. Anderson

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shalini Nair

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian H. Cheeseman

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malcolm E. Molyneux

Malawi-Liverpool-Wellcome Trust Clinical Research Programme

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen A. Ward

Liverpool School of Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge