Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy J. C. Anderson is active.

Publication


Featured researches published by Timothy J. C. Anderson.


The Lancet | 2012

Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

Aung Pyae Phyo; Standwell Nkhoma; Kasia Stepniewska; Elizabeth A. Ashley; Shalini Nair; Rose McGready; Carit Ler Moo; Salma Al-Saai; Arjen M. Dondorp; Khin Maung Lwin; Pratap Singhasivanon; Nicholas P. J. Day; Nicholas J. White; Timothy J. C. Anderson; François Nosten

Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.


Proceedings of the Royal Society of London B: Biological Sciences | 1998

Phylogeny of Wolbachia in filarial nematodes

Claudio Bandi; Timothy J. C. Anderson; Claudio Genchi; Mark Blaxter

Intracellular bacteria have been observed in various species of filarial nematodes (family Onchocercidae). The intracellular bacterium of the canine filaria Dirofilaria immitis has been shown to be closely related to Wolbachia, a rickettsia-like micro–organism that is widespread among arthropods. However, the relationships between endosymbionts of different filariae, and between these and the arthropod wolbachiae, appear not to have been studied. To address these issues we have examined ten species of filarial nematodes for the presence of Wolbachia. For nine species, all samples examined were PCR positive using primers specific for the ftsZ gene of Wolbachia. For one species, the examined samples were PCR negative. Sequences of the amplified ftsZ gene fragments of filarial wolbachiae fall into two clusters (C and D), which are distinct from the A and B clusters recognized for arthropod wolbachiae. These four lineages (A to D) are related in a star–like phylogeny, with higher nucleotide divergence observed between C and D wolbachiae than that observed between A and B wolbachiae. In addition, within each of the two lineages of filarial wolbachiae, the phylogeny of the symbionts is consistent with the host phylogeny. Thus, there is no evidence for recent Wolbachia transmission between arthropods and nematodes. Endosymbiont 16S ribosomal DNA sequences from a subset of filarial species support these findings.


Parasitology | 1999

Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples

Timothy J. C. Anderson; Xin Zhuan Su; Moses J. Bockarie; M. Lagog; Karen P. Day

Multiple, selectively neutral genetic markers are the most appropriate tools for analysis of parasite population structure and epidemiology, but yet existing methods for characterization of malaria field samples utilize a limited number of antigen encoding genes, which appear to be under strong selection. We describe protocols for characterization of 12 microsatellite markers from finger-prick blood samples infected with Plasmodium falciparum. A two-step, heminested strategy was used to amplify all loci, and products were visualized by fluorescent end-labelling of internal primers. This procedure allows amplification from low levels of template, while eliminating the problem of spurious products due to primer carry over from the primary round of PCR. The loci can be conveniently multiplexed, while accurate sizing and quantification of PCR products can be automated using the GENOTYPER software. The primers do not amplify co-infecting malaria species such as P. vivax and P. malariae. To demonstrate the utility of these markers, we characterized 57 infected finger-prick blood samples from the village of Mebat in Papua New Guinea for all 12 loci, and all samples were genotyped a second time to measure reproducibility. Numbers of alleles per locus range from 4 to 10 in this population, while heterozygosities range from 0.21 to 0.87. Reproducibility (measured as concordance between predominant alleles detected in replicate samples) ranged from 92 to 98% for the 12 loci. The composition of PCR products from infections containing multiple malaria clones could also be defined using strict criteria and scored in a highly repeatable manner.


Science | 2012

A Major Genome Region Underlying Artemisinin Resistance in Malaria

Ian H. Cheeseman; Becky Miller; Shalini Nair; Standwell Nkhoma; Asako Tan; John C. Tan; Salma Al Saai; Aung Pyae Phyo; Carit Ler Moo; Khin Maung Lwin; Rose McGready; Elizabeth A. Ashley; Mallika Imwong; Kasia Stepniewska; Poravuth Yi; Arjen M. Dondorp; Mayfong Mayxay; Paul N. Newton; Nicholas J. White; François Nosten; Michael T. Ferdig; Timothy J. C. Anderson

Narrowing Down Artemisinin Resistance Knowing that antimalarial drug resistance is characterized by selective sweeps and reduced diversity around resistance mutations, Cheeseman et al. (p. 79) looked for signatures of selection in a modified genome-wide association study in parasite populations from Cambodia, Laos, and Thailand. Thirty-three regions showed evidence of selection and enrichment of known antimalarial resistance genes. Fine-mapping of parasite samples taken during the past decade narrowed the association down to a 35-kb region of seven genes on chromosome 13 that seemed to explain at least 35% of the observed reduction in parasite clearance rate. However, the absence of strong candidate mutations suggests the involvement of noncoding regulatory mutations. A 35-kilobase region on chromosome 13 of Plasmodium falciparum is linked to reductions in parasite clearance in Southeast Asia. Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6969 polymorphic single-nucleotide polymorphisms (SNPs) in 91 parasites from Cambodia, Thailand, and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chromosome 13 that shows strong association (P = 10−6 to 10−12) with slow CRs, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.


Parasitology | 2001

A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts

Maurizio Casiraghi; Timothy J. C. Anderson; Claudio Bandi; Chiara Bazzocchi; Claudio Genchi

Infection with the endosymbiotic bacteria Wolbachia is widespread in filarial nematodes. Previous studies have suggested concordance between the phylogeny of Wolbachia with that of their nematode hosts. However, there is only one published molecular phylogenetic study of filarial species, based on the 5S rRNA gene spacer. The phylogeny proposed by this study is partially incongruent with previous classifications of filarial nematodes, based on morphological characters. Furthermore, both traditional classifications and molecular phylogenies are, in part, inconsistent with the phylogeny of Wolbachia. Here we report mitochondrial cytochrome oxidase I (COI) gene sequences for 11 species of filaria and for another spirurid nematode which was included as an outgroup. In addition, 16S rRNA, wsp and ftsZ gene sequences were generated for the Wolbachia of several filarial species, in order to complete the available data sets and further resolve the phylogeny of Wolbachia in nematodes. We used these data to evaluate whether nematode and Wolbachia phylogenies are concordant. Some of the possible phylogenetic reconstructions based on COI gene were congruent with the phylogeny of Wolbachia and supported the grouping of the rodent filaria Litomosoides sigmodontis with the lymphatic filariae (i.e. Brugia spp. and Wuchereria spp.) and the sister group relationship of Dirofilaria spp. and Onchocerca spp. However, the placement of the Wolbachia-free filaria Acanthocheilonema viteae is ambiguous and dependent on the phylogenetic methods used.


Clinical Infectious Diseases | 2006

Molecular and Pharmacological Determinants of the Therapeutic Response to Artemether-Lumefantrine in Multidrug-Resistant Plasmodium falciparum Malaria

Ric N. Price; Anne-Catrin Uhlemann; Michèle van Vugt; Al Brockman; Robert Hutagalung; Shalini Nair; Denae Nash; Pratap Singhasivanon; Timothy J. C. Anderson; Sanjeev Krishna; Nicholas J. White; François Nosten

BACKGROUND Our study examined the relative contributions of host, pharmacokinetic, and parasitological factors in determining the therapeutic response to artemether-lumefantrine (AL). METHODS On the northwest border of Thailand, patients with uncomplicated Plasmodium falciparum malaria were enrolled in prospective studies of AL treatment (4- or 6-dose regimens) and followed up for 42 days. Plasma lumefantrine concentrations were measured by high performance liquid chromatography; malaria parasite pfmdr1 copy number was quantified using a real-time polymerase chain reaction assay (PCR), and in vitro drug susceptibility was tested. RESULTS All treatments resulted in a rapid clinical response and were well tolerated. PCR-corrected failure rates at day 42 were 13% (95% confidence interval [CI], 9.6%-17%) for the 4-dose regimen and 3.2% (95% CI, 1.8%-4.6%) for the 6-dose regimen. Increased pfmdr1 copy number was associated with a 2-fold (95% CI, 1.8-2.4-fold) increase in lumefantrine inhibitory concentration(50) (P=.001) and an adjusted hazard ratio for risk of treatment failure following completion of a 4-dose regimen, but not a 6-dose regimen, of 4.0 (95% CI, 1.4-11; P=.008). Patients who had lumefantrine levels below 175 ng/mL on day 7 were more likely to experience recrudescence by day 42 (adjusted hazard ratio, 17; 95% CI, 5.5-53), allowing prediction of treatment failure with 75% sensitivity and 84% specificity. The 6-dose regimen ensured that therapeutic levels were achieved in 91% of treated patients. CONCLUSIONS The lumefantrine plasma concentration profile is the main determinant of efficacy of artemether-lumefantrine. Amplification in pfmdr1 determines lumefantrine susceptibility and, therefore, treatment responses when plasma lumefantrine levels are subtherapeutic.


Lancet Infectious Diseases | 2015

Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker

Kyaw Myo Tun; Mallika Imwong; Khin Maung Lwin; Aye A. Win; Tin Maung Hlaing; Thaung Hlaing; Khin Lin; Myat Phone Kyaw; Katherine Plewes; M. Abul Faiz; Mehul Dhorda; Phaik Yeong Cheah; Sasithon Pukrittayakamee; Elizabeth A. Ashley; Timothy J. C. Anderson; Shalini Nair; Marina McDew-White; Jennifer A. Flegg; Eric P.M. Grist; Philippe Allard Guérin; Richard J. Maude; Frank Smithuis; Arjen M. Dondorp; Nicholas P. J. Day; François Nosten; Nicholas J. White; Charles J. Woodrow

Summary Background Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. Methods We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Findings Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Interpretation Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Funding Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.


PLOS Neglected Tropical Diseases | 2012

A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni.

Anna V. Protasio; Isheng J. Tsai; A. K. Babbage; Sarah Nichol; Martin Hunt; Martin Aslett; Nishadi De Silva; Giles S. Velarde; Timothy J. C. Anderson; Richard Clark; Claire Davidson; Gary P. Dillon; Nancy Holroyd; Philip T. LoVerde; Christine Lloyd; Jacquelline McQuillan; Guilherme Oliveira; Thomas D. Otto; Sophia J. Parker-Manuel; Michael A. Quail; R. Alan Wilson; Adhemar Zerlotini; David W. Dunne; Matthew Berriman

Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasites life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research.


Lancet Infectious Diseases | 2012

Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study

Chanaki Amaratunga; Sokunthea Sreng; Seila Suon; Erika S. Phelps; Kasia Stepniewska; Pharath Lim; Chongjun Zhou; Sivanna Mao; Jennifer M. Anderson; Niklas Lindegardh; Hongying Jiang; Jianping Song; Xin-Zhuan Su; Nicholas J. White; Arjen M. Dondorp; Timothy J. C. Anderson; Michael P. Fay; Jianbing Mu; Socheat Duong; Rick M. Fairhurst

BACKGROUND Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation. We investigated contributions of both parasite genetics and host factors to the artemisinin-resistance phenotype in Pursat, western Cambodia. METHODS Between June 19 and Nov 28, 2009, and June 26 and Dec 6, 2010, we enrolled patients aged 10 years or older with uncomplicated falciparum malaria, a density of asexual parasites of at least 10,000 per μL of whole blood, no symptoms or signs of severe malaria, no other cause of febrile illness, and no chronic illness. We gave participants 4 mg/kg artesunate at 0, 24, and 48 h, 15 mg/kg mefloquine at 72 h, and 10 mg/kg mefloquine at 96 h. We assessed parasite density on thick blood films every 6 h until undetectable. The parasite clearance half-life was calculated from the parasite clearance curve. We genotyped parasites with 18 microsatellite markers and patients for haemoglobin E, α-thalassaemia, and a mutation of G6PD, which encodes glucose-6-phosphate dehydrogenase. To account for the possible effects of acquired immunity on half-life, we used three surrogates for increased likelihood of exposure to P falciparum: age, sex, and place of residence. This study is registered with ClinicalTrials.gov, number NCT00341003. FINDINGS We assessed 3504 individuals from all six districts of Pursat province seeking treatment for malaria symptoms. We enrolled 168 patients with falciparum malaria who met inclusion criteria. The geometric mean half-life was 5·85 h (95% CI 5·54-6·18) in Pursat, similar to that reported in Pailin (p=0·109). We identified two genetically different parasite clone groups: parasite group 1 (PG1) and parasite group 2 (PG2). Non-significant increases in parasite clearance half-life were seen in patients with haemoglobin E (0·55 h; p=0·078), those of male sex (0·96 h; p=0·064), and in 2010 (0·68 h; p=0·068); PG1 was associated with a significant increase (0·79 h; p=0·033). The mean parasite heritability of half-life was 0·40 (SD 0·17). INTERPRETATION Heritable artemisinin resistance is established in a second Cambodian province. To accurately identify parasites that are intrinsically susceptible or resistant to artemisinins, future studies should explore the effect of erythrocyte polymorphisms and specific immune responses on half-life variation. FUNDING Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


PLOS ONE | 2009

Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment

Verena I. Carrara; Julien Zwang; Elizabeth A. Ashley; Ric N. Price; Kasia Stepniewska; Marion Barends; Alan Brockman; Timothy J. C. Anderson; Rose McGready; Lucy Phaiphun; Stephane Proux; Michèle van Vugt; Robert Hutagalung; Khin Maung Lwin; Aung Pyae Phyo; Piyanuch Preechapornkul; Mallika Imwong; Sasithon Pukrittayakamee; Pratap Singhasivanon; Nicholas J. White; François Nosten

Background Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS3), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border. Methods and Findings 3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS3. The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p<0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00–2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS3 efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07–1.19, p<0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0–98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2–5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend). Conclusion Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage.

Collaboration


Dive into the Timothy J. C. Anderson's collaboration.

Top Co-Authors

Avatar

Shalini Nair

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Standwell Nkhoma

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian H. Cheeseman

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge