Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanislaw Schmidt is active.

Publication


Featured researches published by Stanislaw Schmidt.


The Journal of Infectious Diseases | 2011

Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia

Stanislaw Schmidt; Lars Tramsen; Mitra Hanisch; Jean-Paul Latgé; Sabine Huenecke; Ulrike Koehl; Thomas Lehrnbecher

Because natural killer (NK) cells kill tumor cells and combat infections, there is growing interest in adoptively transferring NK cells to hematopoietic stem cell recipients. Unfortunately, in humans, the activity of NK cells against Aspergillus species, the major cause of invasive fungal infection in stem cell recipients, are poorly characterized. Our results show that unstimulated and interleukin-2 prestimulated human NK cells kill Aspergillus fumigatus hyphae but do not affect resting conidia. Killing is also induced by the supernatant of prestimulated NK cells and human perforin. The high levels of interferon-γ and granulocyte macrophage colony-stimulating factor produced by prestimulated NK cells are significantly reduced by Aspergillus, indicating an immunosuppressive effect of the fungus. Whereas Aspergillus hyphae activate NK cells, resting, and germinating, conidia and conidia of ΔrodA mutants lacking the hydrophobic surface layer do not. Our results suggest that adoptively transferred human NK cells may be a potential antifungal tool in the transplantation context.


Immunobiology | 2013

Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity

Stanislaw Schmidt; Lars Tramsen; Susanne Perkhofer; Cornelia Lass-Flörl; Mitra Hanisch; Frauke Röger; Thomas Klingebiel; Ulrike Koehl; Thomas Lehrnbecher

Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT.


Cytotherapy | 2013

Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes.

Lars Tramsen; Stanislaw Schmidt; Halvard Boenig; Jean-Paul Latgé; Cornelia Lass-Flörl; Frauke Roeger; Erhard Seifried; Thomas Klingebiel; Thomas Lehrnbecher

BACKGROUND AIMS Invasive fungal infections, in particular, infections caused by Candida, Aspergillus and mucormycetes, are a major cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. Adoptive transfer of donor-derived anti-fungal T cells shows promise to restore immunity and to offer a cure. Because T cells recognize only specific epitopes, the low rate of patients in which the causal fungal pathogen can be identified and the considerable number of patients with co-infection with several genera or species of fungi significantly limit the application of adoptive immunotherapy. METHODS Using the interferon-γ secretion assay, we isolated multi-specific human anti-fungal T cells after simultaneous stimulation with cellular extracts of Aspergillus fumigatus, Candida albicans and Rhizopus oryzae. Cells were phenotypically and functionally characterized by flow cytometry. RESULTS Of a total of 1.1 × 10(9) peripheral blood mononuclear cells, a median number of 5.2 × 10(7) CD3+ CD4+ T cells was generated within 12 days. This cell population consisted of activated memory TH1 cells and reproducibly responded to a multitude of Aspergillus spp., Candida spp. and mucormycetes with interferon-γ production. On re-stimulation, the generated T cells proliferated and enhanced anti-fungal activity of phagocytes and showed reduced alloreactivity compared with the original cell fraction. CONCLUSIONS Our rapid and simple method of simultaneously generating functionally active multi-specific T cells that recognize a wide variety of medically relevant fungi may form the basis for future clinical trials investigating adoptive immunotherapy in allogeneic hematopoietic stem cell transplantation recipients with invasive fungal infection.


Clinical and Vaccine Immunology | 2013

Natural Killer Cells and Antifungal Host Response

Stanislaw Schmidt; Stefanie-Yvonne Zimmermann; Lars Tramsen; Ulrike Koehl; Thomas Lehrnbecher

ABSTRACT As a result of improved experimental methodologies and a better understanding of the immune system, there is increasing insight into the antifungal activity of natural killer (NK) cells. Murine and human NK cells are able to damage fungi of different genera and species in vitro, and they exert both direct and indirect antifungal activity through cytotoxic molecules such as perforin and through cytokines and interferons, respectively. On the other hand, recent data suggest that fungi exhibit immunosuppressive effects on NK cells. Whereas clear in vivo data are lacking in humans, the importance of NK cells in the host response against fungi has been demonstrated in animal models. Further knowledge of the interaction of NK cells with fungi might help to better understand the pathogenesis of invasive fungal infections and to improve treatment strategies.


Current Pharmaceutical Design | 2013

Immunotherapy in invasive fungal infection--focus on invasive aspergillosis.

Thomas Lehrnbecher; Markus Kalkum; Jackson Champer; Lars Tramsen; Stanislaw Schmidt; Thomas Klingebiel

Despite the availability of new antifungal compounds, morbidity and mortality of invasive aspergillosis are still unacceptably high, in particular in immunocompromised patients such as patients with hematological malignancies or allogeneic hematopoietic stem cell or solid organ transplant recipients. Over the last decades, our knowledge of the immunopathogenesis of invasive aspergillosis has greatly advanced. This, in turn, provided critical information to augment host immunity against fungal pathogens. Potential approaches for enhancing the host immune system in the combat against Aspergillus include the administration of effector and regulatory cells (e.g., granulocytes, antigen-specific T cells, natural killer cells, dendritic cells) as well as the administration of recombinant cytokines, interferons and growth factors (e.g., interferon-γ,granulocyte- and granulocyte-macrophage colony stimulating factor) and various vaccination strategies. Although promising results are reported on in vitro data and animal studies, current data are too limited to allow solid conclusions on the risk and the benefit of these strategies in the clinical setting. Therefore, the real challenge in the future is to perform appropriately designed and powered clinical trials. These require international, multi-center collaboration, but may ultimately improve the outcome in immunocompromised patients suffering from invasive aspergillosis.


The Journal of Infectious Diseases | 2012

Characterization of the Cellular Immune Responses to Rhizopus oryzae With Potential Impact on Immunotherapeutic Strategies in Hematopoietic Stem Cell Transplantation

Stanislaw Schmidt; Lars Tramsen; Susanne Perkhofer; Cornelia Lass-Flörl; Frauke Röger; Ralf Schubert; Thomas Lehrnbecher

Infections due to mucormycetes have a poor outcome, in particular in allogeneic hematopoietic stem cell transplantation (HSCT). In order to evaluate the cellular host response against mucormycetes, we enriched and cultivated anti-Rhizopus oryzae T cells from healthy individuals. These cells were characterized as memory/effector T(H)1 cells, they proliferated upon restimulation, they exhibited cross-reactivity to some but not all Mucorales species tested, and they increased the activity of phagocytes. Compared with the original cell fraction, the generated cells exhibited significant lower alloreactivity. Our data may form the basis for further investigations, which may ultimately lead to adoptive immunotherapeutic strategies for allogeneic HSCT recipients suffering from mucormycosis.


Mycoses | 2016

Natural killer cell-mediated damage of clinical isolates of mucormycetes

Stanislaw Schmidt; Andreas Schneider; Asuman Demir; Cornelia Lass-Flörl; Thomas Lehrnbecher

Haematopoietic stem cell transplant (HSCT) recipients are at high risk for mucormycosis, which has a mortality of up to 90%. The adoptive transfer of Natural killer (NK) cells is a promising therapeutic option in order to improve the reconstitution of host immunity after HSCT and to directly combat the fungal pathogen. As a number of fungal pathogens have developed strategies to evade the innate immune system, we investigated the interaction of human NK cells with various clinical isolates of different species of mucormycetes. Our results show that human IL‐2 prestimulated NK cells damaged all mucormycetes tested. The extent of the damage depended, at least in part, on the growth curve characteristics of the individual fungal isolate. All isolates decreased the secretion of interferon‐γ by NK cells to a similar extent. Our data suggest that NK cells damage a wide spectrum of mucormycetes, but that the antifungal effect is higher if NK cells are administered at an early time point of infection.


Frontiers in Oncology | 2013

Immunotherapy of invasive fungal infection in hematopoietic stem cell transplant recipients

Thomas Lehrnbecher; Stanislaw Schmidt; Lars Tramsen; Thomas Klingebiel

Despite the availability of new antifungal compounds, invasive fungal infection remains a significant cause of morbidity and mortality in children and adults undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Allogeneic HSCT recipients suffer from a long lasting defect of different arms of the immune system, which increases the risk for and deteriorates the prognosis of invasive fungal infections. In turn, advances in understanding these immune deficits have resulted in promising strategies to enhance or restore critical immune functions in allogeneic HSCT recipients. Potential approaches include the administration of granulocytes, since neutropenia is the single most important risk factor for invasive fungal infection, and preliminary clinical results suggest a benefit of adoptively transferred donor-derived antifungal T cells. In vitro data and animal studies demonstrate an antifungal effect of natural killer cells, but clinical data are lacking to date. This review summarizes and critically discusses the available data of immunotherapeutic strategies in allogeneic HSCT recipients suffering from invasive fungal infection.


Infection and Immunity | 2014

Immunosuppressive Compounds Exhibit Particular Effects on Functional Properties of Human Anti-Aspergillus TH1 Cells

Lars Tramsen; Stanislaw Schmidt; Frauke Roeger; Ralf Schubert; Emilia Salzmann-Manrique; Jean-Paul Latgé; Thomas Klingebiel; Thomas Lehrnbecher

ABSTRACT Allogeneic hematopoietic stem cell transplant (HSCT) recipients are at high risk for invasive aspergillosis. Whereas adoptive immunotherapy transferring donor-derived anti-Aspergillus TH1 cells has been shown to be beneficial for HSCT recipients suffering from invasive aspergillosis, little is known about the impact of commonly used immunosuppressants on the functional properties of anti-Aspergillus TH1 cells. Anti-Aspergillus TH1 cells were coincubated with different concentrations of methylprednisolone, cyclosporine (CsA), mycophenolic acid (MPA), the active component of mycophenolate mofetil, and rapamycin. Immunosuppressants were tested in concentrations reflecting common target levels in serum and in significantly lower and higher concentrations. Apoptosis of anti-Aspergillus TH1 cells, as well as proliferation and production of gamma interferon (IFN-γ) and CD154 upon restimulation, was evaluated in the presence and absence of immunosuppressive compounds. All dosages of CsA, MPA, and methylprednisolone significantly decreased the number of viable anti-Aspergillus TH1 cells in the cell culture, which was due partly to an impaired proliferative capacity of the cells and partly to an increased rate of apoptosis. In addition, CsA significantly decreased the number of IFN-γ-producing cells and had the highest impact of all immunosuppressants on IFN-γ levels in the supernatant. CsA also significantly decreased the expression of CD154 by anti-Aspergillus TH1 cells. Variant dosages of immunosuppressants exhibit particular effects on essential functional properties of anti-Aspergillus TH1 cells. Our findings may have an important impact on the design of clinical trials evaluating the therapeutic benefit of anti-Aspergillus TH1 cells in allogeneic HSCT recipients suffering from invasive aspergillosis.


Frontiers in Immunology | 2017

Natural Killer Cells in Antifungal Immunity

Stanislaw Schmidt; Lars Tramsen; Thomas Lehrnbecher

Invasive fungal infections are still an important cause of morbidity and mortality in immunocompromised patients such as patients suffering from hematological malignancies or patients undergoing hematopoietic stem cell transplantion. In addition, other populations such as human immunodeficiency virus-patients are at higher risk for invasive fungal infection. Despite the availability of new antifungal compounds and better supportive care measures, the fatality rate of invasive fungal infection remained unacceptably high. It is therefore of major interest to improve our understanding of the host–pathogen interaction to develop new therapeutic approaches such as adoptive immunotherapy. As experimental methodologies have improved and we now better understand the complex network of the immune system, the insight in the interaction of the host with the fungus has significantly increased. It has become clear that host resistance to fungal infections is not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) also plays an important role. The antifungal activity of natural killer (NK) cells has been underestimated for a long time. In vitro studies demonstrated that NK cells from murine and human origin are able to attack fungi of different genera and species. NK cells exhibit not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal activity via cytokines. However, it has been show that fungi exert immunosuppressive effects on NK cells. Whereas clinical data are scarce, animal models have clearly demonstrated that NK cells play an important role in the host response against invasive fungal infections. In this review, we summarize clinical data as well as results from in vitro and animal studies on the impact of NK cells on fungal pathogens.

Collaboration


Dive into the Stanislaw Schmidt's collaboration.

Top Co-Authors

Avatar

Lars Tramsen

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Thomas Lehrnbecher

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Thomas Klingebiel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Ulrike Koehl

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Ralf Schubert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Thomas Lehrnbecher

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Cornelia Lass-Flörl

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Andreas Schneider

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Frauke Roeger

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge