Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley Freeman is active.

Publication


Featured researches published by Stanley Freeman.


Plant Disease | 1998

Characterization of Colletotrichum Species Responsible for Anthracnose Diseases of Various Fruits

Stanley Freeman; Talma Katan; E. Shabi

ilamentous fungi of the genus Colletotrichum and its teleomorph Glomerella are considered major plant pathogens worldwide. They cause significant economic damage to crops in tropical, subtropical, and temperate regions. Cereals, legumes, ornamentals, vegetables, and fruit trees may be seriously affected by the pathogen (3). Although many cultivated fruit crops are infected by Colletotrichum species, the most significant economic losses are incurred when the fruiting stage is attacked. Colletotrichum species cause typical disease symptoms known as anthracnose, characterized by sunken necrotic tissue where orange conidial masses are produced. Anthracnose diseases appear in both developing and mature plant tissues (4). Two distinct types of diseases occur: those affecting developing fruit in the field (preharvest) and those damaging mature fruit during storage (postharvest). The ability to cause latent or quiescent infections has grouped Colletotrichum among the most important postharvest pathogens. Species of the pathogen appear predominantly on aboveground plant tissues; however, belowground organs, such as roots and tubers, may also be affected. In this article, we deal in particular with methods used to identify and characterize Colletotrichum species and genotypes from almond, avocado, and strawberry, as examples, using traditional and molecular tools. The three pathosystems chosen represent different disease patterns of fruitassociated Colletotrichum. Multiple Species on a Single Host Numerous cases have been reported in which several Colletotrichum species or biotypes are associated with a single host. For example, avocado and mango anthracnose, caused by both C. acutatum and C. gloeosporioides, affect fruit predominantly as postharvest diseases (25,40,41). Strawberry may be infected by three Colletotrichum species, C. fragariae, C. acutatum, and C. gloeosporioides, causing anthracnose of fruit and other plant parts (31). Almond and other deciduous fruits may be infected by C. acutatum or C. gloeosporioides (Table 1) (1,5,46,50). Citrus can be affected by four different Colletotrichum diseases (61): postbloom fruit drop and key lime anthracnose, both caused by C. acutatum, and shoot dieback and leaf spot, and postharvest fruit decay, both caused by C. gloeosporioides. Additional examples of hosts affected by multiple Colletotrichum species include coffee, cucurbits, pepper, and tomato. Single Species on Multiple Hosts It is common to find that a single botanical species of Colletotrichum infects multiple hosts. For example, C. gloeosporioides (Penz.) Penz. & Sacc. in Penz. (teleomorph: Glomerella cingulata (Stoneman) Spauld. & H. Schrenk), which is considered a cumulative species and forms the sexual stage in some instances, is found on a wide variety of fruits, including almond, avocado, apple, and strawberry (Table 2) (6,15,31,46). Likewise, C. acutatum J.H. Simmonds has been reported to infect a large number of fruit crops, including avocado, strawberry, almond, apple, and peach (1,5,16,25,27). Examples of other species with multiple host ranges include C. coccodes, C. capsici, and C. dematium (14,56).


European Journal of Plant Pathology | 2004

Trichoderma Biocontrol of Colletotrichum acutatum and Botrytis cinerea and Survival in Strawberry

Stanley Freeman; Dror Minz; Inna Kolesnik; Olga Barbul; Aida Zveibil; Marcel Maymon; Yehuda Nitzani; Benny Kirshner; Dalia Rav-David; Alon Bilu; Arnon Dag; Sharoni Shafir; Yigal Elad

Trichoderma isolates are known for their ability to control plant pathogens. It has been shown that various isolates of Trichoderma, including T. harzianum isolate T-39 from the commercial biological control product TRICHODEX, were effective in controlling anthracnose (Colletotrichum acutatum) and grey mould (Botrytis cinerea) in strawberry, under controlled and greenhouse conditions. Three selected Trichoderma strains, namely T-39, T-161 and T-166, were evaluated in large-scale experiments using different timing application and dosage rates for reduction of strawberry anthracnose and grey mould. All possible combinations of single, double or triple mixtures of Trichoderma strains, applied at 0.4% and 0.8% concentrations, and at 7 or 10 day intervals, resulted in reduction of anthracnose severity; the higher concentration (0.8%) was superior in control whether used with single isolates or as a result of combined application of two isolates, each at 0.4%. Only a few treatments resulted in significant control of grey mould. Isolates T-39 applied at 0.4% at 2 day intervals, T-166 at 0.4%, or T-161 combined with T-39 at 0.4% were as effective as the chemical fungicide fenhexamide. The survival dynamics of populations of the Trichoderma isolates (T-39, T-105, T-161 and T-166) applied separately was determined by dilution plating and isolates in the mixtures calculated according to the polymerase chain reaction (PCR) using repeat motif primers. The biocontrol isolates were identified to the respective species T. harzianum (T-39), T. hamatum (T-105), T. atroviride (T-161) and T. longibrachiatum (T-166), according to internal transcribed spacer sequence analysis.


Phytopathology | 2000

Molecular Analyses of Colletotrichum Species from Almond and Other Fruits

Stanley Freeman; Dror Minz; Edouard Jurkevitch; Marcel Maymon; E. Shabi

ABSTRACT Isolates of Colletotrichum spp. from almond, avocado, and strawberry from Israel and isolates of the pink subpopulation from almond from the United States were characterized by various molecular methods and compared with morphological identification. Taxon-specific primer analysis grouped the avocado isolates within the species C. gloeosporioides and the U.S. almond and Israeli strawberry isolates within the species C. acutatum. However, the Israeli almond isolates, previously identified morphologically as C. gloeosporioides, reacted with C. acutatum-specific primers. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses determined that each population from almond and strawberry was distinct and clonal. Sequence analysis of the complete internal transcribed spacer (ITS) region (ITS 1-5.8S-ITS 2) revealed a similarity of between 97.03 and 98.72% among almond isolates from Israel, C. acutatum almond isolates from the United States, and C. acutatum strawberry isolates from Israel. Similarity of the above populations to that of C. gloeosporioides of avocado was between 92.42 and 92.86%. DNA sequence analysis of the entire ITS region supported the phylogeny inferred from the ITS 1 tree of 14 different Colletotrichum species. Although morphological criteria indicated that the Israeli isolates from almond are unique, this population was grouped within the C. acutatum species according to molecular analyses.


Phytopathology | 2003

Characterization of Colletotrichum Isolates from Tamarillo, Passiflora, and Mango in Colombia and Identification of a Unique Species from the Genus

Lucia Afanador-Kafuri; Dror Minz; Marcel Maymon; Stanley Freeman

ABSTRACT This study was conducted to identify the species of Colletotrichum infecting tamarillo, mango, and passiflora in Colombia and to assess whether cross-infection between host species is occurring. Isolates of Colletotrichum spp. from tamarillo (n = 54), passiflora (n = 26), and mango (n = 15) were characterized by various molecular methods and by morphological criteria. Morphological characterization grouped the tamarillo isolates as C. acutatum and the passiflora and mango isolates as C. gloeosporioides. Species-specific primer analysis was reliable and confirmed grouping of the tamarillo isolates (besides Tom-6) as C. acutatum and the mango isolates (besides Man-76) as C. gloeosporioides. However, DNA of the passiflora isolates was not amplified by either C. acutatum- or C. gloeosporioides-specific primers, but reacted with a new primer, Col1, designed according to the internal transcribed spacer (ITS) 1 region of these isolates. Isolates Tom-6 and Man-76 also reacted positively with the Col1 primer. All the isolates reacting with the C. acutatum- and C. gloeosporioides-specific primers failed to react with primer Col1. Isolate Pass-35 from passiflora did not react with any of the taxon-specific primers. Arbitrarily primed polymerase chain reaction (ap-PCR), random amplified polymerase DNA (RAPD)-PCR, and A+T-rich DNA analyses delineated representative isolates into subgroups within the designated species. Molecular analyses indicated that the C. acutatum tamarillo isolates were uniform or clonal, whereas the C. gloeosporioides mango isolates and Colletotrichum passiflora isolates were heterogeneous. Likewise, sequence analysis of the complete ITS (ITS1-5.8S-ITS2) region identified certain isolates to their respective species: tamarillo isolates as C. acutatum; mango isolates as C. gloeosporioides; passiflora, Tom-6, and Man-76 isolates as a Colletotrichum sp. as yet undefined; and the Pass-35 isolate as an additional undefined Colletot-richum sp. Molecular analyses of the population of Colletotrichum isolates from passiflora, Tom-6 from tamarillo, and Man-76 from mango indicate that this population may not be host specific.


Phytopathology | 2013

One fungus, one name

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2013

One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use.

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2001

Genetic Diversity Within Colletotrichum acutatum sensu Simmonds

Stanley Freeman; Dror Minz; Marcel Maymon; Aida Zveibil

ABSTRACT Isolates of Colletotrichum acutatum from several hosts were characterized by various molecular methods in comparison with morphological identification. Species-specific primer analysis was reliable for grouping C. acutatum isolates to their designated species. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses identified four subgroups within C. acutatum. Subgroup I contained U.S. isolates from almond, apple, peach, and pecan, subgroup II contained isolates from anemone, olive, and strawberry, subgroup III contained isolates from almond (Israel) and strawberry (Spain), and subgroup IV contained a single isolate from anemone (the Netherlands). Likewise, sequence analysis of the internal transcribed spacer (ITS) 2 region alone or the complete ITS (ITS 1-5.8S-ITS 2) region grouped the isolates into the same four subgroups. Percent similarity of the complete ITS region within each cluster ranged from 99.6 to 100.0, 99.8 to 100.0, and 98.6% among subgroups I, II, and III, respectively. DNA sequence analysis of the ITS 2 region alone or the entire ITS 1-2 region was more informative than that of the ITS 1 region, which could only group the isolates into two main clusters. The molecular methods employed for studying genetic variation in populations of C. acutatum determined that this species is diverse, indicating that isolates within populations of each subgroup are not host specific.


Phytopathology | 1999

Use of GUS Transformants of Fusarium subglutinans for Determining Etiology of Mango Malformation Disease

Stanley Freeman; Marcel Maimon; Yaakov Pinkas

ABSTRACT Fusarium subglutinans has been associated with mango floral and vegetative malformation, although confusion exists regarding the etiology of the disease. A wild-type isolate of F. subglutinans causing mango malformation disease was transformed with the GUS (beta-glucuronidase) reporter and hygromycin resistance genes. Five stable transformants were isolated containing varying copy numbers at different integration sites. Specific GUS activity was quantified for the transformants, whereas no activity was recorded for the wild-type isolate. The transformants and the wild-type isolate were inoculated into healthy mango floral and vegetative buds. Typical symptoms of misshapen shoots with short internodes, stubby leaves, and bunchy, malformed inflorescences were observed 6 to 8 weeks following inoculation. The presence of GUS-stained mycelium of the pathogen viewed microscopically within infected plant organs provided unequivocal evidence that F. subglutinans is indeed a causal agent of mango malformation disease.


Phytopathology | 2003

Genetic diversity and pathogenic variability among isolates of colletotrichum species from strawberry.

Béatrice Denoyes-Rothan; G. Guérin; Christophe Délye; Barbara J. Smith; Dror Minz; Marcel Maymon; Stanley Freeman

ABSTRACT Ninety-five isolates of Colletotrichum including 81 isolates of C. acutatum (62 from strawberry) and 14 isolates of C. gloeosporioides (13 from strawberry) were characterized by various molecular methods and pathogenicity tests. Results based on random amplified polymorphic DNA (RAPD) polymorphism and internal transcribed spacer (ITS) 2 sequence data provided clear genetic evidence of two subgroups in C. acutatum. The first subgroup, characterized as CA-clonal, included only isolates from strawberry and exhibited identical RAPD patterns and nearly identical ITS2 sequence analysis. A larger genetic group, CA-variable, included isolates from various hosts and exhibited variable RAPD patterns and divergent ITS2 sequence analysis. Within the C. acutatum population isolated from strawberry, the CA-clonal group is prevalent in Europe (54 isolates of 62). A subset of European C. acutatum isolates isolated from strawberry and representing the CA-clonal and CA-variable groups was assigned to two pathogenicity groups. No correlation could be drawn between genetic and pathogenicity groups. On the basis of molecular data, it is proposed that the CA-clonal subgroup contains closely related, highly virulent C. acutatum isolates that may have developed host specialization to strawberry. C. gloeosporioides isolates from Europe, which were rarely observed were either slightly or nonpathogenic on strawberry. The absence of correlation between genetic polymorphism and geographical origin in Colletotrichum spp. suggests a worldwide dissemination of isolates, probably through international plant exchanges.


Fungal Genetics and Biology | 2013

An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

Matthew T. Kasson; Kerry O’Donnell; Alejandro P. Rooney; Stacy Sink; Randy C. Ploetz; Jill N. Ploetz; Joshua L. Konkol; Daniel Carrillo; Stanley Freeman; Zvi Mendel; Jason A. Smith; Adam Black; Jiri Hulcr; Craig Bateman; Kristyna Stefkova; Paul R. Campbell; Andrew D. W. Geering; E. K. Dann; Akif Eskalen; Keerthi Mohotti; Dylan P. G. Short; Takayuki Aoki; Kristi Fenstermacher; Donald D. Davis; David M. Geiser

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.

Collaboration


Dive into the Stanley Freeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Sharon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Oded Yarden

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Akif Eskalen

University of California

View shared research outputs
Top Co-Authors

Avatar

David M. Geiser

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro P. Rooney

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daren W. Brown

National Center for Agricultural Utilization Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge