Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steen V. Petersen is active.

Publication


Featured researches published by Steen V. Petersen.


Molecular Immunology | 2001

The mannan-binding lectin pathway of complement activation: biology and disease association

Steen V. Petersen; Steffen Thiel; Jens C. Jensenius

Mannan-binding lectin (MBL) is a plasma protein found in association with several serine proteases (MASPs) forming the MBL complex. MBL recognises carbohydrate structures arranged in a particular geometry, such as those found on the surface of micro-organisms. When bound to e.g. bacteria the MBL complex will initiate the activation of the complement cascade. Mounting evidence supports the importance of the MBL pathway of complement activation in innate immunity. In this review, we focus on the structure and function of the proteins within the MBL pathway and address the properties of the pathway as an initiator of the host response against potential pathogenic micro-organisms.


Journal of Immunological Methods | 2001

An assay for the mannan-binding lectin pathway of complement activation.

Steen V. Petersen; S. Thiel; L. Jensen; Rudi Steffensen; Jens C. Jensenius

The mannan-binding lectin (MBL) pathway of complement activation has been established as the third pathway of complement activation. MBL is a carbohydrate-binding serum protein, which circulates in complex with serine proteases known as mannan-binding lectin associated serine proteases (MASPs). When bound to microorganisms, the MBL complex activates the complement components C4 and C2, thereby generating the C3 convertase and leading to opsonisation by the deposition of C4b and C3b fragments. This C4/C2 cleaving activity is shared with the C1 complex of the classical pathway of complement activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt the C1 complex, whereas the carbohydrate-binding activity of MBL and the integrity of the MBL complex is maintained under hypertonic conditions. In the assay described here, the specific C4b-depositing capacity of the MBL pathway was determined by incubating serum diluted in buffer containing 1 M NaCl in mannan-coated microtiter wells before the addition of purified C4. The interassay coefficient of variation in the ELISA version was 7.3%. As expected no activity was found in MBL-deficient serum. When 100 normal serum samples were analysed we found that the MBL level correlated with the amount of C4b deposited on the mannan-coated surface. However, we also found a threefold variation in C4b-depositing capacity between individuals with similar MBL concentrations. The assay permits for the determination of MBL complex activity in serum and plasma samples and may thus be used to evaluate the clinical implications of complement activation via this pathway.


Journal of Immunology | 2000

Distinct Pathways of Mannan-Binding Lectin (MBL)- and C1-Complex Autoactivation Revealed by Reconstitution of MBL with Recombinant MBL-Associated Serine Protease-2

Thomas Vorup-Jensen; Steen V. Petersen; Annette G. Hansen; Knud Poulsen; Wilhelm J. Schwaeble; Robert B. Sim; Kenneth B. M. Reid; Simon J. Davis; Steffen Thiel; Jens C. Jensenius

Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.


Molecular Microbiology | 2010

Functional amyloid in Pseudomonas

Morten Simonsen Dueholm; Steen V. Petersen; Mads Sønderkær; Poul Larsen; Gunna Christiansen; Kim L. Hein; Jan J. Enghild; Jeppe Lund Nielsen; Kåre Lehmann Nielsen; Per Halkjær Nielsen; Daniel E. Otzen

Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid‐like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA–F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation.


Molecular Immunology | 2000

Control of the classical and the MBL pathway of complement activation

Steen V. Petersen; Steffen Thiel; Lisbeth Jensen; Thomas Vorup-Jensen; Claus Koch; Jens C. Jensenius

The activation of complement via the mannan-binding lectin (MBL) pathway is initiated by the MBL complex consisting of the carbohydrate binding molecule, MBL, two associated serine proteases, MASP-1 and MASP-2, and a third protein, MAp19. In the present report we used an assay of complement activation specifically reflecting the physiological activity of the MBL complex to identify biological and synthetic inhibitors. Inhibitor activity towards the MBL complex was compared to the inhibition of the classical pathway C1 complex and to a complex of MBL and recombinant MASP-2. A number of synthetic inhibitors were found to differ in their activities towards complement activation via the MBL pathway and the classical pathway. C1 inhibitor inhibited both pathways whereas alpha2-macroglobulin (alpha2M) inhibited neither. C1 inhibitor and alpha2M were found to be associated with the MBL complex. Upon incubation at 37 degrees C in physiological buffer, the associated inhibitors as well as MASP-1, MASP-2, and MAp19 dissociated from MBL, whereas only little dissociation of the complex occurred in buffer with high ionic strength (1 M NaCl). The difference in sensitivity to various inhibitors and the influence of high ionic strength on the complexes indicate that the activation and control of the MBL pathway differ from that of the classical pathway. MBL deficiency is linked to various clinical manifestations such as recurrent infections, severe diarrhoea, and recurrent miscarriage. On the other hand, impaired control of complement activation may lead to severe and often chronically disabling diseases. The results in the present report suggests the possibility of specifically inhibiting of the MBL pathway of complement activation.


Biochemical Journal | 2003

Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization.

Steen V. Petersen; Zuzana Valnickova; Jan J. Enghild

Pigment epithelium-derived factor (PEDF) inhibits the formation of blood vessels in the eye by inducing apotosis in actively dividing endothelial cells. The activity of PEDF equals or supersedes that of other anti-angiogenic factors, including angiostatin, endostatin and thrombospondin-1. In addition, PEDF has the potential to promote the survival of neurons and affect their differentiation. Here we show that PEDF is present in plasma at a concentration of approx. 100 nM (5 microg/ml) or twice the level required to inhibit aberrant blood-vessel growth in the eye. Thus the systemic delivery of PEDF has the potential to affect angiogenesis or neurotrophic processes throughout the body, significantly expanding the putative physiological role of the protein. A complete map of all post-translational modifications revealed that authentic plasma PEDF carries an N-terminal pyroglutamate blocking group and an N-linked glycan at position Asn266. The pyroglutamate residue may regulate the activity of PEDF analogously to the manner in which it regulates thyrotropin-releasing hormone.


Journal of Immunology | 2000

Interaction of C1q and Mannan-Binding Lectin (MBL) with C1r, C1s, MBL-Associated Serine Proteases 1 and 2, and the MBL-Associated Protein MAp19

Steffen Thiel; Steen V. Petersen; Thomas Vorup-Jensen; Misao Matsushita; Teizo Fujita; Cordula M. Stover; Wilhelm J. Schwaeble; Jens C. Jensenius

Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controversy as to whether MBL can utilize C1r and C1s or, inversely, whether C1q can utilize MASP-1 and 2. Serum deficient in C1r produced no complement activation in IgG-coated microwells, whereas activation was seen in mannan-coated microwells. In serum, C1r and C1s were found to be associated only with C1q, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated with MBL, whereas in the presence of EDTA most of these components formed smaller complexes. Over 95% of the total MASPs and MAp19 found in serum are not complexed with MBL.


Scandinavian Journal of Immunology | 2001

Characterization and Quantification of Mouse Mannan‐Binding Lectins (MBL‐A and MBL‐C) and Study of Acute Phase Responses

Hong Liu; Lisbeth Jensen; Søren Hansen; Steen V. Petersen; Kazue Takahashi; Alan Ezekowitz; Frederik Hansen; Jens C. Jensenius; Steffen Thiel

Rat monoclonal antibodies (MoAbs) against mouse mannan‐binding lectin (MBL)‐A and MBL‐C were generated and assays for MBL‐A and MBL‐C were constructed. This allowed for the quantitative analysis of both proteins for the first time. Previously only MBL‐A has been quantified using less standardized methods. In a mouse serum pool the concentrations were now determined at 7.5 µg MBL‐A and 45 µg MBL‐C per ml. On gel permeation chromatography of mouse serum, MBL‐A eluted corresponding to a Mr of 850 kDa whereas the majority of MBL‐C eluted corresponding to a Mr of 950 kDa. On sucrose density gradient centrifugation the sedimentation velocities of MBL‐A and MBL‐C were estimated at 7.3 S and 10.8 S, respectively. The MBL‐A and MBL‐C levels in 10 laboratory mice strains were compared and found to vary between 4 µg/ml to 12 µg/ml, and 16 µg/ml to 118 µg/ml, respectively. After the induction of acute phase responses by intraperitoneal injection of either casein or lipopolysaccharide (LPS), MBL‐A was found to increase approximately two‐fold, with a maximum after 32 h, while MBL‐C did not increase significantly. In comparison, serum amyloid A component (SAA) peaked at 15 h with an approximate 100‐fold increase.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The dual nature of human extracellular superoxide dismutase: One sequence and two structures

Steen V. Petersen; Tim D. Oury; Zuzana Valnickova; Ida B. Thøgersen; Peter Højrup; James D. Crapo; Jan J. Enghild

Human extracellular superoxide dismutase (EC-SOD; EC 1.15.1.1) is a scavenger of superoxide anions in the extracellular space. The amino acid sequence is homologous to the intracellular counterpart, Cu/Zn superoxide dismutase (Cu/Zn-SOD), apart from N- and C-terminal extensions. Cu/Zn-SOD is a homodimer containing four cysteine residues within each subunit, and EC-SOD is a tetramer composed of two disulfide-bonded dimers in which each subunit contains six cysteines. The amino acid sequences of all EC-SOD subunits are identical. It is known that Cys-219 is involved in an interchain disulfide. To account for the remaining five cysteine residues we purified human EC-SOD and determined the disulfide bridge pattern. The results show that human EC-SOD exists in two forms, each with a unique disulfide bridge pattern. One form (active EC-SOD) is enzymatically active and contains a disulfide bridge pattern similar to Cu/Zn-SOD. The other form (inactive EC-SOD) has a different disulfide bridge pattern and is enzymatically inactive. The EC-SOD polypeptide chain apparently folds in two different ways, most likely resulting in different three-dimensional structures. Our study shows that one gene may produce proteins with different disulfide bridge arrangements and, thus, by definition, different primary structures. This observation adds another dimension to the functional annotation of the proteome.


Journal of Biological Chemistry | 2007

A Unique Loop Extension in the Serine Protease Domain of Haptoglobin Is Essential for CD163 Recognition of the Haptoglobin-Hemoglobin Complex

Marianne Jensby Nielsen; Steen V. Petersen; Christian Jacobsen; Søren Thirup; Jan J. Enghild; Jonas Heilskov Graversen; Søren K. Moestrup

Haptoglobin and haptoglobin-related protein are homologous hemoglobin-binding proteins consisting of a complement control repeat (α-chain) and a serine protease domain (β-chain). Haptoglobin-hemoglobin complex formation promotes high affinity binding of hemoglobin to the macrophage scavenger receptor CD163 leading to endocytosis and degradation of the haptoglobin-hemoglobin complex. In contrast, complex formation between haptoglobin-related protein and hemoglobin does not promote high affinity interaction with CD163. To define structural components of haptoglobin important for CD163 recognition, we exploited this functional difference to design and analyze recombinant haptoglobin/haptoglobin-related protein chimeras complexed to hemoglobin. These data revealed that only the β-chain of haptoglobin is involved in receptor recognition. Substitution of 4 closely spaced amino acid residues of the haptoglobin β-chain (valine 259, glutamate 261, lysine 262, and threonine 264) abrogated the high affinity receptor binding. The 4 residues are encompassed by a part of the primary structure not present in other serine protease domain proteins. Structural modeling based on the well characterized serine protease domain fold suggests that this sequence represents a loop extension unique for haptoglobin and haptoglobin-related protein. A synthetic peptide representing the haptoglobin loop sequence exhibited a pronounced inhibitory effect on receptor binding of haptoglobin-hemoglobin.

Collaboration


Dive into the Steen V. Petersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim D. Oury

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge