Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Böhm is active.

Publication


Featured researches published by Stefan Böhm.


Nature | 2016

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Ecology Letters | 2015

Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

Eric Allan; Peter Manning; Fabian Alt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Fabrice Grassein; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; E. Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffen-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser; Michael Werner

Abstract Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interannual variation in land-use intensity enhances grassland multidiversity

Eric Allan; Oliver Bossdorf; Carsten F. Dormann; Daniel Prati; Martin M. Gossner; Teja Tscharntke; Nico Blüthgen; Michaela Bellach; Klaus Birkhofer; Steffen Boch; Stefan Böhm; Carmen Börschig; Antonis Chatzinotas; Sabina Christ; Rolf Daniel; Tim Diekötter; Christiane Fischer; Thomas Friedl; Karin Glaser; Christine Hallmann; Ladislav Hodač; Norbert Hölzel; Kirsten Jung; Alexandra-Maria Klein; Valentin H. Klaus; Till Kleinebecker; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller

Significance Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a single or few groups of organisms and have not considered temporal variation in LUI. Therefore, we examined total ecosystem biodiversity in grasslands varying in LUI with a newly developed index called multidiversity, which integrates the species richness of 49 different organism groups ranging from bacteria to birds. Multidiversity declined strongly with increasing LUI, but changing LUI across years increased multidiversity, particularly of rarer species. We conclude that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.


PLOS ONE | 2011

Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur)

Stefan Böhm; Konstans Wells; Elisabeth K. V. Kalko

The intensive foraging of insectivorous birds and bats is well known to reduce the density of arboreal herbivorous arthropods but quantification of collateral leaf damage remains limited for temperate forest canopies. We conducted exclusion experiments with nets in the crowns of young and mature oaks, Quercus robur, in south and central Germany to investigate the extent to which aerial vertebrates reduce herbivory through predation. We repeatedly estimated leaf damage throughout the vegetation period. Exclusion of birds and bats led to a distinct increase in arthropod herbivory, emphasizing the prominent role of vertebrate predators in controlling arthropods. Leaf damage (e.g., number of holes) differed strongly between sites and was 59% higher in south Germany, where species richness of vertebrate predators and relative oak density were lower compared with our other study site in central Germany. The effects of bird and bat exclusion on herbivory were 19% greater on young than on mature trees in south Germany. Our results support previous studies that have demonstrated clear effects of insectivorous vertebrates on leaf damage through the control of herbivorous arthropods. Moreover, our comparative approach on quantification of leaf damage highlights the importance of local attributes such as tree age, forest composition and species richness of vertebrate predators for control of arthropod herbivory.


Philosophical Transactions of the Royal Society B | 2016

Locally rare species influence grassland ecosystem multifunctionality

Santiago Soliveres; Peter Manning; Daniel Prati; Martin M. Gossner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann; Esther Pašalić

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Ecology | 2015

Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa

Peter Manning; Martin M. Gossner; Oliver Bossdorf; Eric Allan; Yuanye Zhang; Daniel Prati; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Jochen Krauss; Markus Lange; Jörg Müller; Esther Pašalić; Stephanie A. Socher; Marco Tschapka; Manfred Türke; Christiane N. Weiner; Michael Werner; Sonja Gockel; Andreas Hemp; Swen C. Renner; Konstans Wells; François Buscot; Elisabeth K. V. Kalko

Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hy...


PeerJ | 2014

Movement and ranging patterns of the Common Chaffinch in heterogeneous forest landscapes

Katrin Kubiczek; Swen C. Renner; Stefan Böhm; Elisabeth K. V. Kalko; Konstans Wells

The partitioning of production forests into discretely managed forest stands confronts animals with diversity in forest attributes at scales from point-level tree assemblages to distinct forest patches and range-level forest cover. We have investigated the movement and ranging patterns of male Common Chaffinches, Fringilla coelebs, in heterogeneous forest production landscapes during spring and summer in south-western Germany. We radio-tracked a total of 15 adult males, each for up to six days, recording locations at 10-min intervals. We then performed point-level tree surveys at all tracking locations and classified forest stand attributes for the areal covering of birds’ ranges. Movement distances were shortest in beech forest stands and longer in spruce-mixed and non-spruce conifer stands. Movement distances increased with stand age in beech stands but not in others, an effect that was only detectable in a multilevel hierarchical model. We found negligible effects of point-level tree assemblages and temperature on movement distances. Daily range estimates were from 0.01 to 8.0 hectare (median of 0.86 ha) with no evident impact of forest attributes on ranging patterns but considerable intra-individual variation in range sizes over consecutive days. Most daily ranges covered more than one forest stand type. Our results show that forest management impacts the movement behaviour of chaffinches in heterogeneous production forest. Although point-level effects of movement distances are weak compared with stand-level effects in this study, the hierarchical organization of forest is an important aspect to consider when analysing fine-scale movement and might exert more differentiated effects on bird species that are more sensitive to habitat changes than the chaffinch.


Journal of Applied Ecology | 2018

Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships

Fons van der Plas; Eric Allan; Markus Fischer; Fabian Alt; Hartmut Arndt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; H. Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffan-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser

1.Rapid growth of the worlds human population has increased pressure on landscapes to deliver high levels of multiple ecosystem services, including food and fibre production, carbon storage, biodiversity conservation and recreation. However, we currently lack general principles describing how to achieve this landscape multifunctionality. 2.We combine theoretical simulations and empirical data on 14 ecosystem services measured across 150 grasslands in three German regions. In doing so, we investigate the circumstances under which spatial heterogeneity in a driver of ecosystem functioning (an ‘ecosystem‐driver,’ e.g. the presence of keystone species, land‐use intensification or habitat types) increases landscape‐level ecosystem multifunctionality. 3.Simulations based on theoretical data demonstrated that relationships between heterogeneity and landscape multifunctionality are highly variable and can range from non‐significant to strongly positive. Despite this variability, we could identify criteria under which heterogeneity‐landscape multifunctionality relationships were most strongly positive: this happened when multiple ecosystem services responded contrastingly (both positively and negatively) to an ecosystem‐driver. 4.These findings were confirmed using empirical data, which showed that heterogeneity in land‐use intensity promoted landscape multifunctionality in cases where functions with both positive (e.g. plant biomass) and negative (e.g. flower cover) responses to land use intensification were included. For example, the simultaneous provisioning of ecosystem functions related to forage production (generally profiting from land‐use intensification), biodiversity conservation and recreation (generally decreasing with land‐use intensification) was highest in landscapes consisting of sites varying in land‐use intensity. 5.Synthesis and applications. Our findings show that there are general principles governing landscape multifunctionality. A knowledge of these principles may support land management decisions. For example, knowledge of relationships between ecosystem services and their drivers, such as land use type, can help estimate the consequences of increasing or decreasing heterogeneity for landscape‐level ecosystem service supply, although interactions between landscape units (e.g. the movement of pollinators) must also be considered.


Journal of Applied Ecology | 2012

Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands

Kirsten Jung; Sonja Kaiser; Stefan Böhm; Jens Nieschulze; Elisabeth K. V. Kalko


Journal of Applied Ecology | 2018

The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests

Peter Schall; Martin M. Gossner; Steffi Heinrichs; Markus Fischer; Steffen Boch; Daniel Prati; Kirsten Jung; Vanessa Baumgartner; Stefan Blaser; Stefan Böhm; François Buscot; Rolf Daniel; Kezia Goldmann; Kristin Kaiser; Tiemo Kahl; Markus Lange; Jörg Müller; Jörg Overmann; Swen C. Renner; Ernst-Detlef Schulze; Johannes Sikorski; Marco Tschapka; Manfred Türke; Wolfgang W. Weisser; Bernd Wemheuer; Tesfaye Wubet; Christian Ammer

Collaboration


Dive into the Stefan Böhm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nico Blüthgen

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge