Stefan Caddy-Retalic
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Caddy-Retalic.
GigaScience | 2016
Andrew Bissett; Anna Fitzgerald; Thys Meintjes; Pauline M. Mele; Frank Reith; Paul G. Dennis; Martin F. Breed; Belinda Brown; Mark V. Brown; Joël Brugger; Margaret Byrne; Stefan Caddy-Retalic; Bernie Carmody; David J. Coates; Carolina Correa; Belinda C. Ferrari; Vadakattu V. S. R. Gupta; Kelly Hamonts; Asha Haslem; Philip Hugenholtz; Mirko Karan; Jason Koval; Andrew J. Lowe; Stuart Macdonald; Leanne McGrath; David Martin; Matthew J. Morgan; Kristin I. North; Chanyarat Paungfoo-Lonhienne; Elise Pendall
BackgroundMicrobial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function.FindingsBASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project’s data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the ‘Atlas of Living Australia’.ConclusionsDeveloped within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.
Science of The Total Environment | 2015
C.A. Campbell; Ec Lefroy; Stefan Caddy-Retalic; Nicholas J. Bax; P.J. Doherty; Michael M. Douglas; D. Johnson; Hugh P. Possingham; Alison Specht; D. Tarte; J. West
Transdisciplinary research, involving close collaboration between researchers and the users of research, has been a feature of environmental problem solving for several decades, often spurred by the need to find negotiated outcomes to intractable problems. In 2005, the Australian government allocated funding to its environment portfolio for public good research, which resulted in consecutive four-year programmes (Commonwealth Environmental Research Facilities, National Environmental Research Program). In April 2014, representatives of the funders, researchers and research users associated with these programmes met to reflect on eight years of experience with these collaborative research models. This structured reflection concluded that successful multi-institutional transdisciplinary research is necessarily a joint enterprise between funding agencies, researchers and the end users of research. The design and governance of research programmes need to explicitly recognise shared accountabilities among the participants, while respecting the different perspectives of each group. Experience shows that traditional incentive systems for academic researchers, current trends in public sector management, and loose organisation of many end users, work against sustained transdisciplinary research on intractable problems, which require continuity and adaptive learning by all three parties. The likelihood of research influencing and improving environmental policy and management is maximised when researchers, funders and research users have shared goals; there is sufficient continuity of personnel to build trust and sustain dialogue throughout the research process from issue scoping to application of findings; and there is sufficient flexibility in the funding, structure and operation of transdisciplinary research initiatives to enable the enterprise to assimilate and respond to new knowledge and situations.
Ecology and Evolution | 2017
Stefan Caddy-Retalic; Alan N. Andersen; Michael J. Aspinwall; Martin F. Breed; Margaret Byrne; Matthew J. Christmas; Ning Dong; Bradley Evans; Damien A. Fordham; Greg R. Guerin; Ary A. Hoffmann; Alice C. Hughes; S J van Leeuwen; Francesca A. McInerney; Suzanne M. Prober; Maurizio Rossetto; Paul D. Rymer; Dorothy A. Steane; Glenda M. Wardle; Andrew J. Lowe
Abstract Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.
PLOS ONE | 2018
Zdravko Baruch; Stefan Caddy-Retalic; Greg R. Guerin; Ben Sparrow; Emrys Leitch; Andrew Tokmakoff; Andrew J. Lowe
We describe and correlate environmental, floristic and structural vegetation traits of a large portion of Australian rangelands. We analysed 351 one hectare vegetation plots surveyed by Australia’s Terrestrial Ecosystem Research Network (TERN) using the AusPlots Rangelands standardized method. The AusPlots Rangelands method involves surveying 1010 one meter-spaced point-intercepts (IPs) per plot. At each IP, species were scored, categorised by growth-form, converted to percentage cover as the input for the plot x species matrix. Vegetation structure is depicted by growth-form configuration and relative importance. The floristic and structural distance matrices were correlated with the Mantel test. Canonical correspondence analysis (CCA) related floristic composition to environmental variables sourced from WorldClim, the Atlas of Living Australia and TERN’s Soil and Landscape Grid. Differences between clusters were tested with ANOVA while principal component analysis (PCA) ordered the plots within the environmental space. Our plot x species matrix required segmentation due to sparsity and high β-diversity. Based on the ordination of plots latitude within environmental space, the matrix was segmented into three “superclusters”: the winter rain and temperate Mediterranean, the monsoonal rain savannas and the arid deserts. Further classification, with the UPGMA linkage method, generated two, four and five clusters, respectively. All groupings are described by species richness, diversity indices and growth form conformation. Several floristic disjunctions were apparent and their possible causes are discussed. For all superclusters, the correspondence between the floristic and the structural or growth form matrices was statistically significant. CCA ordination clearly demarcated all groupings. Aridity, rainfall, temperature, seasonality, soil nitrogen and pH are significant correlates to the ordination of superclusters and clusters. At present, our results are influenced by incomplete sampling. As more sites are surveyed, this pioneer analysis will be updated and refined providing tools for the effective management of Australian rangelands.
Frontiers in Ecology and Evolution | 2018
Eleanor E. Dormontt; Kor-jent van Dijk; Karen L. Bell; Ed Biffin; Martin F. Breed; Margaret Byrne; Stefan Caddy-Retalic; Francisco Encinas-Viso; Paul G. Nevill; Alison Shapcott; Jennifer M. Young; Michelle Waycott; Andrew J. Lowe
Building DNA barcode databases for plants has historically been ad hoc, and often with a relatively narrow taxonomic focus. To realise the full potential of DNA barcoding for plants, and particularly its application to metabarcoding for mixed-species environmental samples, systematic sequencing of reference collections is required using an augmented set of DNA barcode loci, applied according to agreed data generation and analysis standards. The largest and most complete reference collections of plants are held in herbaria. Australia has a globally significant flora that is well sampled and expertly curated by its herbaria, coordinated through the Council of Heads of Australasian Herbaria. There exists a tremendous opportunity to provide a comprehensive and taxonomically robust reference database for plant DNA barcoding applications by undertaking coordinated and systematic sequencing of the entire flora of Australia utilising existing herbarium material. In this paper, we review the development of DNA barcoding and metabarcoding and consider the requirements for a robust and comprehensive system. We analysed the current availability of DNA barcode reference data for Australian plants, recommend priority taxa for database inclusion and highlight future applications of a comprehensive metabarcoding system. We urge that large-scale and coordinated analysis of herbarium collections be undertaken to realise the promise of DNA barcoding and metabarcoding, and propose that the generation and curation of reference data should become a national investment priority.
Aob Plants | 2018
Zdravko Baruch; Alice R. Jones; Kathryn E. Hill; Francesca A. McInerney; Colette Blyth; Stefan Caddy-Retalic; Matthew J. Christmas; Nick Gellie; Andrew J. Lowe; Irene Martín-Forés; Kristine E Nielson; Martin F. Breed
We studied a native Australian shrub—Dodonaea viscosa, or sticky hop bush—in the wild and in a gardening experiment and found that the species can readily adapt to different environments. Our findings are interesting because the plants we used came from sites with quite different environmental conditions, although they were only short distances apart. Our findings indicate that the potential risks associated with moving plants between sites with different environmental conditions are not likely to cause negative outcomes for restoration projects using this species, which is commonly used for restoration in southern Australia.
Molluscan Research | 2011
Stefan Caddy-Retalic; Kirsten Benkendorff; Peter G. Fairweather
Biogeosciences | 2016
Ning Dong; I. C. Prentice; Bradley Evans; Stefan Caddy-Retalic; Andrew J. Lowe; Ian J. Wright
Archive | 2012
Andrew White; Ben Sparrow; Emrys Leitch; J. Foulkes; R. Flitton; Andrew J. Lowe; Stefan Caddy-Retalic
Austral Ecology | 2017
Zdravko Baruch; Matthew J. Christmas; Martin F. Breed; Greg R. Guerin; Stefan Caddy-Retalic; John McDonald; Duncan I. Jardine; Emrys Leitch; Nick Gellie; Kathryn E. Hill; Kimberly P. McCallum; Andrew J. Lowe