Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Costinean is active.

Publication


Featured researches published by Stefan Costinean.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B

Muller Fabbri; Ramiro Garzon; Amelia Cimmino; Zhongfa Liu; Nicola Zanesi; Elisa Callegari; Shujun Liu; Hansjuerg Alder; Stefan Costinean; Cecilia Fernandez-Cymering; Stefano Volinia; Gulnur Guler; Carl Morrison; Kenneth K. Chan; Guido Marcucci; George A. Calin; Kay Huebner; Carlo M. Croce

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3′-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Pre-B Cell Proliferation and Lymphoblastic Leukemia/High-Grade Lymphoma in MIR155 Transgenic Mice

Stefan Costinean; Nicola Zanesi; Yuri Pekarsky; Esmerina Tili; Stefano Volinia; Nyla A. Heerema; Carlo M. Croce

MicroRNAs (miRNAs) represent a newly discovered class of posttranscriptional regulatory noncoding small RNAs that bind to targeted mRNAs and either block their translation or initiate their degradation. miRNA profiling of hematopoietic lineages in humans and mice showed that some miRNAs are differentially expressed during hematopoietic development, suggesting a role in hematopoietic cell differentiation. In addition, recent studies suggest the involvement of miRNAs in the initiation and progression of cancer. miR155 and BIC, its host gene, have been reported to accumulate in human B cell lymphomas, especially in diffuse large B cell lymphomas, Hodgkin lymphomas, and certain types of Burkitt lymphomas. Here, we show that E(mu)-mmu-miR155 transgenic mice exhibit initially a preleukemic pre-B cell proliferation evident in spleen and bone marrow, followed by frank B cell malignancy. These findings indicate that the role of miR155 is to induce polyclonal expansion, favoring the capture of secondary genetic changes for full transformation.


Journal of Immunology | 2007

Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock

Esmerina Tili; Jean-Jacques Michaille; Amelia Cimino; Stefan Costinean; Calin Dan Dumitru; Brett Adair; Muller Fabbri; Hannes Alder; Chang Gong Liu; George A. Calin; Carlo M. Croce

We report here that miR-155 and miR-125b play a role in innate immune response. LPS stimulation of mouse Raw 264.7 macrophages resulted in the up-regulation of miR-155 and down-regulation of miR-125b levels. The same changes also occurred when C57BL/6 mice were i.p. injected with LPS. Furthermore, the levels of miR-155 and miR-125b in Raw 264.7 cells displayed oscillatory changes in response to TNF-α. These changes were impaired by pretreating the cells with the proteasome inhibitor MG-132, suggesting that these two microRNAs (miRNAs) may be at least transiently under the direct control of NF-κB transcriptional activity. We show that miR-155 most probably directly targets transcript coding for several proteins involved in LPS signaling such as the Fas-associated death domain protein (FADD), IκB kinase ε (IKKε), and the receptor (TNFR superfamily)-interacting serine-threonine kinase 1 (Ripk1) while enhancing TNF-α translation. In contrast, miR-125b targets the 3′-untranslated region of TNF-α transcripts; therefore, its down-regulation in response to LPS may be required for proper TNF-α production. Finally, Eμ-miR-155 transgenic mice produced higher levels of TNF-α when exposed to LPS and were hypersensitive to LPS/d-galactosamine-induced septic shock. Altogether, our data suggest that the LPS/TNF-α-dependent regulation of miR-155 and miR-125b may be implicated in the response to endotoxin shock, thus offering new targets for drug design.


Cancer Cell | 2009

miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.

Michela Garofalo; Gianpiero Di Leva; Giulia Romano; Gerard J. Nuovo; Sung-Suk Suh; Apollinaire Ngankeu; Cristian Taccioli; Flavia Pichiorri; Hansjuerg Alder; Paola Secchiero; Pierluigi Gasparini; Arianna Gonelli; Stefan Costinean; Mario Acunzo; Gerolama Condorelli; Carlo M. Croce

Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.


Journal of Clinical Investigation | 2012

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver

Shu-hao Hsu; Bo Wang; Janaiah Kota; Jianhua Yu; Stefan Costinean; Huban Kutay; Lianbo Yu; Shoumei Bai; Krista La Perle; Raghu R. Chivukula; Hsiaoyin Mao; Min Wei; K. Reed Clark; Michael A. Caligiuri; Samson T. Jacob; Joshua T. Mendell; Kalpana Ghoshal

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Oncogene | 2011

microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer

Chiara Braconi; Takayuki Kogure; Nicola Valeri; Nianyuan Huang; Gerard J. Nuovo; Stefan Costinean; Massimo Negrini; Elena Miotto; Carlo M. Croce; Tushar Patel

The human genome is replete with long non-coding RNAs (lncRNA), many of which are transcribed and likely to have a functional role. Microarray analysis of >23 000 lncRNAs revealed downregulation of 712 (∼3%) lncRNA in malignant hepatocytes, among which maternally expressed gene 3 (MEG3) was downregulated by 210-fold relative to expression in non-malignant hepatocytes. MEG3 expression was markedly reduced in four human hepatocellular cancer (HCC) cell lines compared with normal hepatocytes by real-time PCR. RNA in situ hybridization showed intense cytoplasmic expression of MEG3 in non-neoplastic liver with absent or very weak expression in HCC tissues. Enforced expression of MEG3 in HCC cells significantly decreased both anchorage-dependent and -independent cell growth, and induced apoptosis. MEG3 promoter hypermethylation was identified by methylation-specific PCR and MEG3 expression was increased with inhibition of methylation with either 5-Aza-2-Deoxycytidine, or siRNA to DNA Methyltransferase (DNMT) 1 and 3b in HCC cells. MiRNA-dependent regulation of MEG3 expression was studied by evaluating the involvement of miR-29, which can modulate DNMT 1 and 3. Overexpression of mir-29a increased expression of MEG3. GTL2, the murine homolog of MEG3, was reduced in liver tissues from hepatocyte-specific miR-29a/b1 knock-out mice compared with wild-type controls. These data show that methylation-dependent tissue-specific regulation of the lncRNA MEG3 by miR-29a may contribute to HCC growth and highlight the inter-relationship between two classes of non-coding RNA, miRNAs and lncRNAs, and epigenetic regulation of gene expression.


Blood | 2009

Src homology 2 domain–containing inositol-5-phosphatase and CCAAT enhancer-binding protein β are targeted by miR-155 in B cells of Eμ-MiR-155 transgenic mice

Stefan Costinean; Sukhinder K. Sandhu; Irene M. Pedersen; Esmerina Tili; Rossana Trotta; Danilo Perrotti; David Ciarlariello; Paolo Neviani; Jason G. Harb; Lauren Rachel Kauffman; Aaditya Shidham; Carlo M. Croce

We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT enhancer-binding protein beta (C/EBPbeta), 2 important regulators of the interleukin-6 signaling pathway, are direct targets of MiR-155 and become gradually more down-regulated in the leukemic than in the preleukemic mice. We hypothesize that miR-155, by down-modulating Ship and C/EBPbeta, initiates a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Modulation of mismatch repair and genomic stability by miR-155

Nicola Valeri; Pierluigi Gasparini; Muller Fabbri; Chiara Braconi; Angelo Veronese; Francesca Lovat; Brett Adair; Ivan Vannini; Francesca Fanini; Arianna Bottoni; Stefan Costinean; Sukhinder K. Sandhu; Gerard J. Nuovo; Hansjuerg Alder; Roberta Gafà; Federica Calore; Manuela Ferracin; Giovanni Lanza; Stefano Volinia; Massimo Negrini; Michael A. McIlhatton; Dino Amadori; Richard Fishel; Carlo M. Croce

Inactivation of mismatch repair (MMR) is the cause of the common cancer predisposition disorder Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), as well as 10–40% of sporadic colorectal, endometrial, ovarian, gastric, and urothelial cancers. Elevated mutation rates (mutator phenotype), including simple repeat instability [microsatellite instability (MSI)] are a signature of MMR defects. MicroRNAs (miRs) have been implicated in the control of critical cellular pathways involved in development and cancer. Here we show that overexpression of miR-155 significantly down-regulates the core MMR proteins, hMSH2, hMSH6, and hMLH1, inducing a mutator phenotype and MSI. An inverse correlation between the expression of miR-155 and the expression of MLH1 or MSH2 proteins was found in human colorectal cancer. Finally, a number of MSI tumors with unknown cause of MMR inactivation displayed miR-155 overexpression. These data provide support for miR-155 modulation of MMR as a mechanism of cancer pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Targeted deletion of Wwox reveals a tumor suppressor function.

Rami I. Aqeilan; Francesco Trapasso; Sadiq Hussain; Stefan Costinean; Dean Marshall; Yuri Pekarsky; John P. Hagan; Nicola Zanesi; Mohamed Kaou; Gary S. Stein; Jane B. Lian; Carlo M. Croce

The WW domain-containing oxidoreductase (WWOX) spans the second most common fragile site of the human genome, FRA16D, located at 16q23, and its expression is altered in several types of human cancer. We have previously shown that restoration of WWOX expression in cancer cells suppresses tumorigenicity. To investigate WWOX tumor suppressor function in vivo, we generated mice carrying a targeted deletion of the Wwox gene and monitored incidence of tumor formation. Osteosarcomas in juvenile Wwox−/− and lung papillary carcinoma in adult Wwox+/− mice occurred spontaneously. In addition, Wwox+/− mice develop significantly more ethyl nitrosourea-induced lung tumors and lymphomas in comparison to wild-type littermate mice. Intriguingly, these tumors still express Wwox protein, suggesting haploinsuffiency of WWOX itself is cancer predisposing. These results indicate that WWOX is a bona fide tumor suppressor.


Blood | 2009

Karyotype-specific microRNA signature in chronic lymphocytic leukemia

Rosa Visone; Laura Z. Rassenti; Angelo Veronese; Cristian Taccioli; Stefan Costinean; Baltazar D. Aguda; Stefano Volinia; Manuela Ferracin; Jeff Palatini; Veronica Balatti; Hansjuerg Alder; Massimo Negrini; Thomas J. Kipps; Carlo M. Croce

Chromosomal abnormalities, immunoglobulin heavy chain variable-region (IGHV) gene mutation status, and zeta-associated protein 70 (ZAP-70) expression levels have independent prognostic relevance in chronic lymphocytic leukemia (CLL); however, their concordance is variable. Because deregulation of microRNAs has been linked to disease initiation and progression in CLL, we studied the value of the microRNAs as a signature for CLL patients with specific chromosomal abnormalities. We identified 32 microRNAs able to discriminate the 11q deletion, 17p deletion, trisomy 12, 13q deletion, and normal karyotype cytogenetic subgroups. The expression values of 9 among the 32 microRNAs (miR-151-3p, miR-34a, miR-29c, miR-29b, miR-155, miR-148a, miR-146a, miR-146b5p, and miR-640) were correlated with gene expression data from the same samples to assess their biologic impact on CLL. In this study we also found that IGHV unmutated, high expression of ZAP-70 protein, and low expression of the miR-223, miR-29c, miR-29b, and miR-181 family were strongly associated with disease progression in CLL cases harboring 17p deletion, whereas in those harboring trisomy 12 only high expression of the miR-181a, among the analyzed parameters, suggested more aggressive disease. Thus, the use of the microRNA-based classifications may yield clinically useful biomarkers of tumor behavior in CLL.

Collaboration


Dive into the Stefan Costinean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge