Stefan Helling
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Helling.
Biochimica et Biophysica Acta | 2012
Maik Hüttemann; Stefan Helling; Thomas H. Sanderson; Christopher Sinkler; Lobelia Samavati; Gargi Mahapatra; Ashwathy Varughese; Guorong Lu; Jenney Liu; Rabia Ramzan; Sebastian Vogt; Lawrence I. Grossman; Jeffrey W. Doan; Katrin Marcus; Icksoo Lee
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Molecular & Cellular Proteomics | 2008
Stefan Helling; Sebastian Vogt; Annika Rhiel; Rabia Ramzan; Li Wen; Katrin Marcus; Bernhard Kadenbach
The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.
Molecular and Cellular Neuroscience | 2013
Wei Xiang; Johannes C. M. Schlachetzki; Stefan Helling; Julia C. Bussmann; Marvin Berlinghof; Tilman E. Schäffer; Katrin Marcus; Jürgen Winkler; Jochen Klucken; Cord-Michael Becker
Aggregation and neurotoxicity of misfolded alpha-synuclein (αSyn) are crucial mechanisms for progressive dopaminergic neurodegeneration associated with Parkinsons disease (PD). Posttranslational modifications (PTMs) of αSyn caused by oxidative stress, including modification by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), have been implicated to promote oligomerization of αSyn. However, it is yet unclear if these PTMs lead to different types of oligomeric intermediates. Moreover, little is known about which PTM-derived αSyn species exerts toxicity to dopaminergic cells. In this study, we directly compared aggregation characteristics of HNE-αSyn, n-αSyn, and o-αSyn. Generally, all of them promoted αSyn oligomerization. Particularly, HNE-αSyn and n-αSyn were more prone to forming oligomers than unmodified αSyn. Moreover, these PTMs prevented the formation of amyloid-like fibrils, although HNE-αSyn and o-αSyn were able to generate protofibrillar structures. The cellular effects associated with distinct PTMs were studied by exposing modified αSyn to dopaminergic Lund human mesencephalic (LUHMES) neurons. The cellular toxicity of HNE-αSyn was significantly higher than other PTM species. Furthermore, we tested the toxicity of HNE-αSyn in dopaminergic LUHMES cells and other cell types with low tyrosine hydroxylase (TH) expression, and additionally analyzed the loss of TH-immunoreactive cells in HNE-αSyn-treated LUHMES cells. We observed a selective toxicity of HNE-αSyn to neurons with higher TH expression. Further mechanistic studies showed that HNE-modification apparently increased the interaction of extracellular αSyn with neurons. Moreover, exposure of differentiated LUHMES cells to HNE-αSyn triggered the production of intracellular reactive oxygen species, preceding neuronal cell death. Antioxidant treatment effectively protected cells from the damage triggered by HNE-αSyn. Our findings suggest a specific pathological effect of HNE-αSyn on dopaminergic neurons.
Cardiovascular Research | 2013
Sebastian Kötter; Laurence Gout; Marion von Frieling-Salewsky; Anna Eliane Müller; Stefan Helling; Katrin Marcus; Cristobal G. dos Remedios; Wolfgang A. Linke; Martina Krüger
AIMS Titin-based myofilament stiffness is defined by the expression levels of the cardiac titin-isoforms, N2B and N2BA, and by phosphorylation of the elastic titin domains N2-B unique sequence (N2-Bus) and PEVK. Phosphorylation of the N2-Bus by cGMP-dependent protein kinase (PKG) or cAMP-dependent protein kinase (PKA) decreases titin stiffness, whereas phosphorylation of the PEVK-domain by PKC increases it. We aimed to identify specific sites within the N2-Bus phosphorylated by PKA and PKG and to determine whether differential changes in titin domain phosphorylation could affect passive stiffness in human failing hearts. METHODS AND RESULTS Using mass spectrometry, we identified seven partly conserved PKA/PKG-targeted phosphorylation motifs in human and rat N2-Bus. Polyclonal antibodies to pSer4185, pSer4010, and pSer4099 in the N2-Bus, and to pSer11878 in the PEVK-region were used to quantify titin-domain phosphorylation by western blot analyses of a set of human donor and failing hearts with similar titin-isoform composition. Passive tension determined in skinned human myocardial fibre preparations was significantly increased in failing compared with donor hearts, notably at shorter sarcomere lengths where titin contributes most to total passive tension. Phosphorylation of Ser4185, Ser4010, and Ser4099 in the N2-Bus was significantly reduced in failing hearts, whereas phosphorylation of Ser11878 in the PEVK-region was increased compared with donor hearts. CONCLUSION We conclude that hypo-phosphorylation of the N2-Bus and hyper-phosphorylation of the PEVK domain can act complementary to elevate passive tension in failing human hearts. Differential changes in titin-domain phosphorylation may be important to fine-tune passive myocardial stiffness and diastolic function of the heart.
Human Molecular Genetics | 2014
Meike Diepenbroek; Nicolas Casadei; Hakan Esmer; Takaomi C. Saido; Jiro Takano; Philipp J. Kahle; Ralph A. Nixon; Mala V. Rao; Ronald Melki; Laura Pieri; Stefan Helling; Katrin Marcus; Rejko Krueger; Eliezer Masliah; Olaf Riess; Silke Nuber
Lewy bodies, a pathological hallmark of Parkinsons disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.
Proteomics | 2012
Stefan Helling; Maik Hüttemann; Rabia Ramzan; Su Hyeon Kim; Icksoo Lee; Thorsten Müller; Elmar Langenfeld; Helmut E. Meyer; Bernhard Kadenbach; Sebastian Vogt; Katrin Marcus
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the “allosteric ATP‐inhibition,” which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the “allosteric ATP‐inhibition” is switched on by the protein kinase A‐dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the “allosteric ATP‐inhibition” of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr‐218 in subunit II, Ser‐1 in subunit Va, Ser‐2 in subunit Vb, and Ser‐1 in subunit VIIc. With the exception of Ser‐2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without “allosteric ATP inhibition,” making Ser‐2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the “allosteric ATP‐inhibition,” and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.
Analytical Chemistry | 2011
Stefan Helling; Sudhirkumar Shinde; Frederic Brosseron; Anke Schnabel; Thorsten Müller; Helmut E. Meyer; Katrin Marcus; Börje Sellergren
Novel molecularly imprinted polymers (MIPs) designed to bind the side chain of phosphotyrosine can be used as artificial receptors for affinity-based enrichment of proteolytic peptides. In comparison with general enrichment methods for phosphorylated peptides such as TiO(2)-based methods, the pTyr-imprinted polymers offered high selectivity for pTyr-containing peptides down to the low fmol level. This suggests MIPs as a new tool for affinity-based proteomics.
Journal of Proteome Research | 2011
Thorsten Müller; Andreas Schrötter; Christina Loosse; Stefan Helling; Christian Stephan; Maike Ahrens; Julian Uszkoreit; Martin Eisenacher; Helmut E. Meyer; Katrin Marcus
New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientists data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.
PLOS Neglected Tropical Diseases | 2009
Alexandra Schwarz; Stefan Helling; Nicolas Collin; Clarissa Teixeira; Nora Medrano-Mercado; Jen C.C. Hume; Teresa C.F. Assumpção; Katrin Marcus; Christian Stephan; Helmut E. Meyer; José M. C. Ribeiro; Peter F. Billingsley; Jesus G. Valenzuela; Jeremy M. Sternberg; G. A. Schaub
Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Scientific Reports | 2015
Jing Chen; Sudhirkumar Shinde; Markus Hermann Koch; Martin Eisenacher; Sara Galozzi; Thilo Lerari; Katalin Barkovits; Prabal Subedi; Reiko Krüger; Katja Kuhlmann; Börje Sellergren; Stefan Helling; Katrin Marcus
Phosphospecific enrichment techniques and mass spectrometry (MS) are essential tools for comprehending the cellular phosphoproteome. Here, we report a fast and simple approach for low sequence-bias phosphoserine (pS) peptide capture and enrichment that is compatible with low biological or clinical sample input. The approach exploits molecularly imprinted polymers (MIPs, “plastic antibodies”) featuring tight neutral binding sites for pS or pY that are capable of cross-reacting with phosphopeptides of protein proteolytic digests. The versatility of the resulting method was demonstrated with small samples of whole-cell lysate from human embryonic kidney (HEK) 293T cells, human neuroblastoma SH-SY5Y cells, mouse brain or human cerebrospinal fluid (CSF). Following pre-fractionation of trypsinized proteins by strong cation exchange (SCX) chromatography, pS-MIP enrichment led to the identification of 924 phosphopeptides in the HEK 293T whole-cell lysate, exceeding the number identified by TiO2-based enrichment (230). Moreover, the phosphopeptides were extracted with low sequence bias and showed no evidence for the characteristic preference of TiO2 for acidic amino acids (aspartic and glutamic acid). Applying the method to human CSF led to the discovery of 47 phosphopeptides belonging to 24 proteins and revealed three previously unknown phosphorylation sites.