Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan P. W. Walker is active.

Publication


Featured researches published by Stefan P. W. Walker.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Sexual selection explains sex-specific growth plasticity and positive allometry for sexual size dimorphism in a reef fish

Stefan P. W. Walker; Mark I. McCormick

In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Renschs rule’. While most researchers attribute Renschs rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Renschs rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Renschs rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature.


Regional Environmental Change | 2016

A Framework for Understanding Climate Change Impacts on Coral Reef Social-Ecological Systems

Joshua E. Cinner; Morgan S. Pratchett; Nicholas A. J. Graham; Vanessa Messmer; Mariana M. P. B. Fuentes; Tracy D. Ainsworth; Natalie C. Ban; Line K. Bay; Jessica Blythe; Delphine Dissard; Simon R. Dunn; Louisa Evans; Michael Fabinyi; Pedro Fidelman; Joana Figueiredo; Ashley J. Frisch; Christopher J. Fulton; Christina C. Hicks; Vimoksalehi Lukoschek; Jenny Mallela; Aurélie Moya; Lucie Penin; Jodie L. Rummer; Stefan P. W. Walker; David H. Williamson

Abstract Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.


PLOS ONE | 2010

Differing mechanisms underlie sexual size-dimorphism in two populations of a sex-changing fish.

Mark I. McCormick; Christopher Ryen; Philip L. Munday; Stefan P. W. Walker

Variability in the density of groups within a patchy environment lead to differences in interaction rates, growth dynamics and social organization. In protogynous hermaphrodites there are hypothesised trade-offs among sex-specific growth, reproductive output and mortality. When differences in density lead to changes to social organization the link between growth and the timing of sex-change is predicted to change. The present study explores this prediction by comparing the social organisation and sex-specific growth of two populations of a protogynous tropical wrasse, Halichoeres miniatus, which differ in density. At a low density population a strict harem structure was found, where males maintained a tight monopoly of access and spawning rights to females. In contrast, at a high density population a loosely organised system prevailed, where females could move throughout multiple male territories. Otolith microstructure revealed the species to be annual and deposit an otolith check associated with sex-change. Growth trajectories suggested that individuals that later became males in both populations underwent a growth acceleration at sex-change. Moreover, in the high density population, individuals that later became males were those individuals that had the largest otolith size at hatching and consistently deposited larger increments throughout early larval, juvenile and female life. This study demonstrates that previous growth history and growth rate changes associated with sex change can be responsible for the sexual dimorphism typically found in sex-changing species, and that the relative importance of these may be socially constrained.


Coral Reefs | 2009

Growth acceleration, behaviour and otolith check marks associated with sex change in the wrasse Halichoeres miniatus

Philip L. Munday; Christopher Ryen; Mark I. McCormick; Stefan P. W. Walker

In protogynous sex-changing fishes, females are expected to compete for the opportunity to change sex following the loss of a dominant male and may exhibit growth and behavioural traits that help them maintain their dominant status after sex change. A male removal experiment was used to examine changes in female growth and behaviour associated with sex change in the haremic wrasse Halichoeres miniatus and to test whether any changes in growth associated with sex change were recorded in otolith microstructure. Dominant females began displaying male-characteristic behaviour almost immediately after the harem male was removed. The frequency of interactions between females increased following male removal. In contrast, feeding frequency of females decreased. The largest one to three females in each social group changed sex following male removal and exhibited an increase in growth associated with sex change. Sex changers grew more than twice as fast as non-sex changers during the experimental period. This growth acceleration may enable new sex-changed males to rapidly reach a size where they can defend the remaining harem from other males. An optical discontinuity (check mark) was present in the otoliths of sex-changed fish, and otolith accretion rate increased significantly after the check mark, corresponding with the increased growth rate of sex-changing females. Wild caught males, but not females, exhibited an analogous check mark in their otoliths and similar increases in otolith increment widths after the check. This indicates that an increase in growth rate is a regular feature of sex-change dynamics of H. miniatus.


The American Naturalist | 2010

Density‐Dependent Sex Ratio Adjustment and the Allee Effect: A Model and a Test Using a Sex‐Changing Fish

Stefan P. W. Walker; Loïc M. Thibaut; Mark I. McCormick

Positive density dependence (i.e., the Allee effect; AE) often has important implications for the dynamics and conservation of populations. Here, we show that density‐dependent sex ratio adjustment in response to sexual selection may be a common AE mechanism. Specifically, using an analytical model we show that an AE is expected whenever one sex is more fecund than the other and sex ratio bias toward the less fecund sex increases with density. We illustrate the robustness of this pattern, using Monte Carlo simulations, against a range of body size–fecundity relationships and sex‐allocation strategies. Finally, we test the model using the sex‐changing polygynous reef fish Parapercis cylindrica; positive density dependence in the strength of sexual selection for male size is evidenced as the causal mechanism driving local sex ratio adjustment, hence the AE. Model application may extend to invertebrates, reptiles, birds, and mammals, in addition to over 70 reef fishes. We suggest that protected areas may often outperform harvest quotas as a conservation tool since the latter promotes population fragmentation, reduced polygyny, a balancing of the sex ratio, and hence up to a 50% decline in per capita fecundity, while the former maximizes polygyny and source‐sink potential.


Biology Letters | 2009

Fish ears are sensitive to sex change

Stefan P. W. Walker; Mark I. McCormick

Many reef fishes change sex during their life. The testing of life-history theory and effective fisheries management therefore relies on our ability to detect when this fundamental transition occurs. This study experimentally illustrates the potential to glean such information from the otolithic bodies of the inner-ear apparatus in the sex-changing fish Parapercis cylindrica. It will now be possible to reconstruct the complete, often complex life history of hermaphroditic individuals from hatching through to terminal reproductive status. The validation of sex-change associated otolith growth also illustrates the potential for sex-specific sensory displacement. It is possible that sex-changing fishes alter otolith composition, and thus sensory-range specificity, to optimize life history in accordance with their new reproductive mode.


Oecologia | 2014

Small-scale environmental variation influences whether coral-dwelling fish promote or impede coral growth

Tory J. Chase; Morgan S. Pratchett; Stefan P. W. Walker; Mia O. Hoogenboom

Mutualistic symbioses are ubiquitous in nature and facilitate high biodiversity and productivity of ecosystems by enhancing the efficiency of energy and nutrient use within ecological communities. For example, small groups of fish that inhabit coral colonies in reef ecosystems potentially enhance coral growth through defense from coral predators, aeration of coral tissue and nutrient provisioning. This study examines whether the prevalence and consequences of fish-coral interactions vary among sites with different environmental conditions in a coral reef lagoon, using the humbug damselfish Dascyllus aruanus and its preferred coral host Pocillopora damicornis as a study system. Using a field experiment, we tested the site-specific effects of D. aruanus on coral growth, and show that the cost-benefit ratio for corals hosting fish varies with local environmental variation. Results of this study also demonstrate that fish prefer to inhabit coral colonies with particular branch-spacing characteristics, and that the local abundance of D. aruanus influences the proportion of coral colonies within a site that are occupied by fish rather than increasing the number of fish per colony. We also show that corals consistently benefit from hosting D. aruanus via defense from predation by corallivorous butterflyfish, regardless of local environmental conditions. These findings highlight the need to consider the potential for multiple scale- and state-dependent interaction effects when examining the ecology of fish-coral associations. We suggest that fluctuating cost-benefit ratios for species interactions may contribute to the maintenance of different colony phenotypes within coral populations.


Scientific Reports | 2018

Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfish

Jessica P. Nowicki; Stefan P. W. Walker; Darren J. Coker; Andrew S. Hoey; Katia J. Nicolet; Morgan S. Pratchett

Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. We found that pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves.


Coral Reefs | 2007

Opportunistic hybridization between two congeneric tropical reef fish

Stefan P. W. Walker; Christopher Ryen

[Extract] The wrasses Halichoeres margaritaceus and Halichoeres miniatus (family Labridae) are monandric protogynous hermaphrodites, where males are derived from females through post-maturational sex change. Under stable social conditions the male of each species guards several intraspecific females and mates exclusively with those females daily. However, when male H. miniatus were removed during behavioural experiments at Lizard Island, Great Barrier Reef, male H. margaritaceus increased territory area to incorporate both H. margaritaceus and H. miniatus females. H. miniatus females participated in courting behaviour, resulting in pair-spawning bouts. When eggs from such spawnings were collected 79% were found to be fertilized, and these embryos hatched and develop into larvae. Hybrid spawning via the removal of H. miniatus males was replicated at two additional sites within the lagoon.


PLOS ONE | 2018

Variation in social systems within Chaetodon butterflyfishes, with special reference to pair bonding

Jessica P. Nowicki; Lauren A. O’Connell; Peter F. Cowman; Stefan P. W. Walker; Darren J. Coker; Morgan S. Pratchett

For many animals, affiliative relationships such as pair bonds form the foundation of society and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying mechanistic principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Using stochastic character mapping, we provide the first analysis of the evolutionary history of butterflyfish sociality, revealing that pairing is ancestral, with at least seven independent transitions to gregarious grouping and solitary behavior since the late Miocene. We then formally verified social systems in six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping at Lizard Island, Australia. In situ observations of the size, selective affiliation and aggression, fidelity, and sex composition of social groups confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15%) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes, including parental care. Hence, the proposed butterflyfish populations are promising for inter- and intra-species comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the aforementioned utility of these species applies across their geographic disruptions.

Collaboration


Dive into the Stefan P. W. Walker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren J. Coker

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Fulton

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge