Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Prokop is active.

Publication


Featured researches published by Stefan Prokop.


Nature Neuroscience | 2009

Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia

Stefan A. Grathwohl; Roland Kälin; Tristan Bolmont; Stefan Prokop; Georg Winkelmann; Stephan A. Kaeser; Jörg Odenthal; Rebecca Radde; Therese Eldh; Sam Gandy; Adriano Aguzzi; Matthias Staufenbiel; Paul M. Mathews; Hartwig Wolburg; Frank L. Heppner; Mathias Jucker

In Alzheimers disease, microglia cluster around β-amyloid deposits, suggesting that these cells are important for amyloid plaque formation, maintenance and/or clearance. We crossed two distinct APP transgenic mouse strains with CD11b-HSVTK mice, in which nearly complete ablation of microglia was achieved for up to 4 weeks after ganciclovir application. Neither amyloid plaque formation and maintenance nor amyloid-associated neuritic dystrophy depended on the presence of microglia.


Nature Medicine | 2012

Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline

Johannes vom Berg; Stefan Prokop; Kelly R. Miller; Juliane Obst; Roland E. Kälin; Ileana Lopategui-Cabezas; Anja Wegner; Florian Mair; Carola G. Schipke; Oliver Peters; York Winter; Burkhard Becher; Frank L. Heppner

The pathology of Alzheimers disease has an inflammatory component that is characterized by upregulation of proinflammatory cytokines, particularly in response to amyloid-β (Aβ). Using the APPPS1 Alzheimers disease mouse model, we found increased production of the common interleukin-12 (IL-12) and IL-23 subunit p40 by microglia. Genetic ablation of the IL-12/IL-23 signaling molecules p40, p35 or p19, in which deficiency of p40 or its receptor complex had the strongest effect, resulted in decreased cerebral amyloid load. Although deletion of IL-12/IL-23 signaling from the radiation-resistant glial compartment of the brain was most efficient in mitigating cerebral amyloidosis, peripheral administration of a neutralizing p40-specific antibody likewise resulted in a reduction of cerebral amyloid load in APPPS1 mice. Furthermore, intracerebroventricular delivery of antibodies to p40 significantly reduced the concentration of soluble Aβ species and reversed cognitive deficits in aged APPPS1 mice. The concentration of p40 was also increased in the cerebrospinal fluid of subjects with Alzheimers disease, which suggests that inhibition of the IL-12/IL-23 pathway may attenuate Alzheimers disease pathology and cognitive deficits.


PLOS ONE | 2013

Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology

Grietje Krabbe; Annett Halle; Vitali Matyash; Jan Leo Rinnenthal; Gina Eom; Ulrike Bernhardt; Kelly R. Miller; Stefan Prokop; Helmut Kettenmann; Frank L. Heppner

Microglial cells closely interact with senile plaques in Alzheimer’s disease and acquire the morphological appearance of an activated phenotype. The significance of this microglial phenotype and the impact of microglia for disease progression have remained controversial. To uncover and characterize putative changes in the functionality of microglia during Alzheimer’s disease, we directly assessed microglial behavior in two mouse models of Alzheimer’s disease. Using in vivo two-photon microscopy and acute brain slice preparations, we found that important microglial functions - directed process motility and phagocytic activity - were strongly impaired in mice with Alzheimer’s disease-like pathology compared to age-matched non-transgenic animals. Notably, impairment of microglial function temporally and spatially correlated with Aβ plaque deposition, and phagocytic capacity of microglia could be restored by interventionally decreasing amyloid burden by Aβ vaccination. These data suggest that major microglial functions progressively decline in Alzheimer’s disease with the appearance of Aβ plaques, and that this functional impairment is reversible by lowering Aβ burden, e.g. by means of Aβ vaccination.


ACS Chemical Biology | 2009

Novel Pentameric Thiophene Derivatives for in Vitro and in Vivo Optical Imaging of a Plethora of Protein Aggregates in Cerebral Amyloidoses

Andreas Åslund; Christina J. Sigurdson; Therése Klingstedt; Stefan A. Grathwohl; Tristan Bolmont; Dara L. Dickstein; Eirik Glimsdal; Stefan Prokop; Mikael Lindgren; Peter Konradsson; David M. Holtzman; Patrick R. Hof; Frank L. Heppner; Samuel E. Gandy; Mathias Jucker; Adriano Aguzzi; Per Hammarström; K. Peter R. Nilsson

Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Abeta-assemblies during in vitro fibrillation of Abeta peptides. In brain tissue samples, Abeta deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8). In addition, a patchy islet-like staining of individual Abeta plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA. The major hallmarks of Alzheimers disease, namely, Abeta aggregates versus NFTs, could also be distinguished because of distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Abeta-tau interactions, and pathogenesis both ex vivo and in vivo.


Acta Neuropathologica | 2013

Microglia actions in Alzheimer’s disease.

Stefan Prokop; Kelly R. Miller; Frank L. Heppner

The identification of microglia-associated, neurological disease-causing mutations in patients, combined with studies in mouse models has highlighted microglia, the brain’s intrinsic myeloid cells, as key modulators of pathogenesis and disease progression in neurodegenerative diseases. In Alzheimer’s disease (AD) in particular, the activation and accumulation of microglial cells around β-Amyloid (Aβ) plaques has long been described and is believed to result in chronic neuroinflammation—a term that, despite being commonly used, lacks a precise definition. This seemingly directed response of microglia to amyloid deposits conflicts with the fact that the increasing buildup of Aβ plaques is not inhibited by these cells during disease progression. While recent evidence suggests that microglia lose their intrinsic beneficial function during the course of AD and may even acquire a “toxic” phenotype over time, Aβ may also simply not be an appropriate trigger to induce phagocytosis and degradation by microglia in vivo. As recent experimental evidence has indicated the importance of the microglia in AD pathogenesis, future efforts aimed at tackling this disease via utilization or modulation of microglia or factors therefrom appear to be an exciting and challenging research front.


American Journal of Pathology | 2011

M2 Polarized Macrophages and Giant Cells Contribute to Myofibrosis in Neuromuscular Sarcoidosis

Stefan Prokop; Frank L. Heppner; Hans H. Goebel; Werner Stenzel

The etiopathogenesis of sarcoidosis, a systemic granulomatous disease, still remains obscure. A multitude of organs have been described to be affected in systemic sarcoidosis. Skeletal muscles may also be affected, leading to myalgia and weakness. A workup of the specific immune response with emphasis on the macrophage response is provided herein. Affected muscle tissue from seven patients with systemic sarcoidosis was analyzed and compared with that from seven patients with other myopathies containing macrophagocytic infiltration. Monocytes/macrophages and giant cells in granulomas of muscle tissue from patients with sarcoidosis show a status of alternative activation (M2) based on their expression of CD206, CD301, arginase-1, and suppressor of cytokine signaling-1 as a consequence of a functionally type 2 helper T cell (Th2)-biased cytokine profile. Significant fibrosis and up-regulation of CCL18 were associated with the M2 phenotype of macrophages. Conversely, up-regulated Th1 cytokines did not result in significant classical activation of macrophages (M1), with poor inducible nitric oxide synthase and cyclooxygenase-2 production. Giant cell formation was further associated with up-regulated expression of DNAX-activating protein of 12 kDa (DAP12; gene symbol TYROBP). Functionally, alternative activation of macrophages on the basis of a Th2-biased immune response may induce clinical symptoms and chronic evolution of neuromuscular sarcoidosis. This is the first characterization of Th2-mediated immune mechanisms in neuromuscular sarcoidosis suggesting that a specific macrophage activation status leading to myofibrosis may be a key event in the pathogenesis of this disease.


Journal of Experimental Medicine | 2015

Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease–like mice

Stefan Prokop; Kelly R. Miller; Natalia Drost; Susann Handrick; Vidhu Mathur; Jian Luo; Anja Wegner; Tony Wyss-Coray; Frank L. Heppner

Prokop et al. demonstrate that conditional ablation of resident microglia in a mouse model of Alzheimer’s disease (AD) results in no significant change in amyloid-β burden, despite nearly complete replacement with peripheral myeloid cells. The findings suggest that additional triggers appear to be required to exploit the full potential of myeloid cell–based therapies for AD.


PLOS Pathogens | 2011

Impairment of Immunoproteasome Function by β5i/LMP7 Subunit Deficiency Results in Severe Enterovirus Myocarditis

Elisa Opitz; Annett Koch; Karin Klingel; Frank Schmidt; Stefan Prokop; Anna Rahnefeld; Martina Sauter; Frank L. Heppner; Uwe Völker; Reinhard Kandolf; Ulrike Kuckelkorn; Karl Stangl; Elke Krüger; Peter M. Kloetzel; Antje Voigt

Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.


ACS Chemical Biology | 2013

Evidence for age-dependent in vivo conformational rearrangement within Aβ amyloid deposits.

Sofie Nyström; Katarzyna Maria Psonka-Antonczyk; Pål Gunnar Ellingsen; Leif B. G. Johansson; Nina Kristine Reitan; Susann Handrick; Stefan Prokop; Frank L. Heppner; Bettina M. Wegenast-Braun; Mathias Jucker; Mikael Lindgren; Bjørn T. Stokke; Per Hammarström; K. Peter R. Nilsson

Deposition of aggregated Aβ peptide in the brain is one of the major hallmarks of Alzheimers disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aβ plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout.


ChemBioChem | 2013

Luminescent Conjugated Oligothiophenes for Sensitive Fluorescent Assignment of Protein Inclusion Bodies

Therése Klingstedt; Cristiane Blechschmidt; Anna Nogalska; Stefan Prokop; Bo Häggqvist; Olof Danielsson; W. King Engel; Valerie Askanas; Frank L. Heppner; K. Peter R. Nilsson

Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s‐IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co‐localization with proteins reported to accumulate in s‐IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands.

Collaboration


Dive into the Stefan Prokop's collaboration.

Top Co-Authors

Avatar

Mathias Jucker

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Lindgren

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge