Stefan R. Schulze
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan R. Schulze.
Genetics | 2004
Junkang Rong; Colette A. Abbey; John E. Bowers; Curt L. Brubaker; Charlene Chang; Peng W. Chee; Terrye A. Delmonte; Xiaoling Ding; Juan J. Garza; Barry S. Marler; Chan Hwa Park; Gary J. Pierce; Katy M. Rainey; Vipin K. Rastogi; Stefan R. Schulze; Norma L. Trolinder; Jonathan F. Wendel; Thea A. Wilkins; T. Dawn Williams-Coplin; Rod A. Wing; Robert J. Wright; Xinping Zhao; Linghua Zhu; Andrew H. Paterson
We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM (∼600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM (∼500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6–11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the “portability” of these STS loci across populations and detection systems useful for marker-assisted improvement of the worlds leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.
Theoretical and Applied Genetics | 2004
M. E. Ferguson; Mark D. Burow; Stefan R. Schulze; P. J. Bramel; Andrew H. Paterson; Stephen Kresovich; Sharon E. Mitchell
A major constraint to the application of biotechnology to the improvement of the allotetraploid peanut, or groundnut (Arachis hypogaea L.), has been the paucity of polymorphism among germplasm lines using biochemical (seed proteins, isozymes) and DNA markers (RFLPs and RAPDs). Six sequence-tagged microsatellite (STMS) markers were previously available that revealed polymorphism in cultivated peanut. Here, we identify and characterize 110 STMS markers that reveal genetic variation in a diverse array of 24 peanut landraces. The simple-sequence repeats (SSRs) were identified with a probe of two 27,648-clone genomic libraries: one constructed using PstI and the other using Sau3AI/BamHI. The most frequent, repeat motifs identified were ATT and GA, which represented 29% and 28%, respectively, of all SSRs identified. These were followed by AT, CTT, and GT. Of the amplifiable primers, 81% of ATT and 70.8% of GA repeats were polymorphic in the cultivated peanut test array. The repeat motif AT showed the maximum number of alleles per locus (5.7). Motifs ATT, GT, and GA had a mean number of alleles per locus of 4.8, 3.8, and 3.6, respectively. The high mean number of alleles per polymorphic locus, combined with their relative frequency in the genome and amenability to probing, make ATT and GA the most useful and appropriate motifs to target to generate further SSR markers for peanut.
Plant Physiology | 2006
Frank A. Feltus; H.P. Singh; H.C. Lohithaswa; Stefan R. Schulze; T.D. Silva; Andrew H. Paterson
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Theoretical and Applied Genetics | 2004
H.-M. Ma; Stefan R. Schulze; Scott Lee; Meizhu Yang; E. Mirkov; James E. Irvine; Paul H. Moore; Andrew H. Paterson
Its large genome and high polyploidy makes sugarcane (Saccharum spp.) a singularly challenging crop to study and improve using genetic approaches. To provide large numbers of functionally characterized candidate genes that might be tested for direct association (rather than distant linkage) with economically important traits, we sequenced the 5′ ends of 9,216 clones from three cDNA libraries (apex, leaf and mature internode), representing 3,401 non-redundant sequences. About 57% of these sequences could be assigned a tentative function based on statistically significant similarity to previously characterized proteins or DNA sequences. Another 28% corresponded to previously identified, but uncharacterized, sequences. Some of the remaining unidentified sequences were predicted to be genes which could potentially be new to plants or unique to sugarcane. Comparisons of the sugarcane ESTs to a large sorghum EST database revealed similar compositions of expressed genes between some different tissues. Comparison to a detailed Arabidopsis protein database showed some highly conserved sequences, which might be useful DNA markers for pan-angiosperm comparative mapping. These EST sequences provide a foundation for many new studies to accelerate isolation of agronomically important genes from the cumbersome sugarcane genome.
Plant Physiology | 2006
Cheol Seong Jang; Terry L. Kamps; D. Neil Skinner; Stefan R. Schulze; William K. Vencill; Andrew H. Paterson
Rhizomes are organs of fundamental importance to plant competitiveness and invasiveness. We have identified genes expressed at substantially higher levels in rhizomes than other plant parts, and explored their functional categorization, genomic organization, regulatory motifs, and association with quantitative trait loci (QTLs) conferring rhizomatousness. The finding that genes with rhizome-enriched expression are distributed across a wide range of functional categories suggests some degree of specialization of individual members of many gene families in rhizomatous plants. A disproportionate share of genes with rhizome-enriched expression was implicated in secondary and hormone metabolism, and abiotic stimuli and development. A high frequency of unknown-function genes reflects our still limited knowledge of this plant organ. A putative oligosaccharyl transferase showed the highest degree of rhizome-specific expression, with several transcriptional or regulatory protein complex factors also showing high (but lesser) degrees of specificity. Inferred by the upstream sequences of their putative rice (Oryza sativa) homologs, sorghum (Sorghum bicolor) genes that were relatively highly expressed in rhizome tip tissues were enriched for cis-element motifs, including the pyrimidine box, TATCCA box, and CAREs box, implicating the gibberellins in regulation of many rhizome-specific genes. From cDNA clones showing rhizome-enriched expression, expressed sequence tags forming 455 contigs were plotted on the rice genome and aligned to QTL likelihood intervals for ratooning and rhizomatous traits in rice and sorghum. Highly expressed rhizome genes were somewhat enriched in QTL likelihood intervals for rhizomatousness or ratooning, with specific candidates including some of the most rhizome-specific genes. Some rhizomatousness and ratooning QTLs were shown to be potentially related to one another as a result of ancient duplication, suggesting long-term functional conservation of the underlying genes. Insight into genes and pathways that influence rhizome growth set the stage for genetic and/or exogenous manipulation of rhizomatousness, and for further dissection of the molecular evolution of rhizomatousness.
Molecular Genetics and Genomics | 2005
Bayram Yüksel; James C. Estill; Stefan R. Schulze; Andrew H. Paterson
The scarcity of genetic polymorphism in Arachis hypogaea (peanut), as in other monophyletic polyploid species, makes it especially vulnerable to nematode, bacterial, fungal, and viral pathogens. Although no disease resistance genes have been cloned from peanut itself, the conserved motifs in cloned resistance genes from other plant species provide a means to isolate and analyze similar genes from peanut. To survey the number, diversity, evolutionary history, and genomic organization of resistance gene-like sequences in peanut, we isolated 234 resistance gene analogs (RGAs) by using primers designed from conserved regions of different classes of resistance genes including NBS-LRR, and LRR-TM classes. Phylogenetic and sequence analyses were performed to explore evolutionary relationships both among peanut RGAs and with orthologous genes from other plant taxa. Fifty-six overgos designed from the RGA sequences on the basis of their phyletic association were applied to a peanut BAC library; 736 hybridizing BAC clones were fingerprinted and contigs were formed in order to gain insights into the genomic organization of these genes. All the fingerprinting gels were blotted and screened with the respective overgos in order to verify the authenticity of the hits from initial screens, and to explore the physical organization of these genes in terms of both copy number and distribution in the genome. As a result, we identified 250 putative resistance gene loci. A correlation was found between the phyletic positions of the sequences and their physical locations. The BACs isolated here will serve as a valuable resource for future applications, such as map-based cloning, and will help improve our understanding of the evolution and organization of these genes in the peanut genome.
Bioinformatics | 2004
Brad Chapman; John E. Bowers; Stefan R. Schulze; Andrew H. Paterson
MOTIVATION Whole genome duplications have played a major role in determining the structure of eukaryotic genomes. Current evidence revealing large blocks of duplicated chromatin yields new insights into the evolutionary history of species, but also presents a major challenge for researchers attempting to utilize comparative genomics techniques. Understanding the timing of duplication events relative to divergence among taxa is critical to accurate and comprehensive cross-species comparisons. RESULTS We describe a large-scale approach to estimate the timing of duplication events in a phylogenetic context. The methodology has been previously utilized for analysis of Arabidopsis and Saccharomyces duplication events. This new implementation provides a more flexible and reusable framework for these analyses. Scripts written in the Python programming language drive a number of freely available bioinformatics programs, creating a no-cost tool for researchers. The usefulness of the approach is demonstrated through genome-scale analysis of Arabidopsis and Oryza (rice) duplications. AVAILABILITY Software and documentation are freely available from http://plantgenome.agtec.uga.edu/bioinformatics/dating/
Molecular Breeding | 2013
Junkang Rong; Jon S. Robertson; Stefan R. Schulze; Andrew H. Paterson
DNA polymorphisms are powerful tools for many evolutionary and genomic studies in plants including molecular breeding. Single nucleotide polymorphisms (SNPs) are the most elemental DNA marker for genomic studies, but even with advances in DNA sequencing technology, SNP discovery remains costly and computationally demanding, especially in large genomes that are rich in repetitive DNA such as those of many plants. Here we report a method using DNA renaturation kinetics (Cot techniques), sequencing, and BLAST-based screening to identify low-copy, non-coding DNA sequences that were subsequently found to be relatively rich in polymorphisms. A total of of 63 such fragments isolated from a diploid D genome cotton species (Gossypium raimondii) revealed a higher frequency of polymorphisms than that observed for cotton expressed sequence tags or hypomethylated (PstI-susceptible) genomic DNA. While microsatellite-derived loci show still higher polymorphism rates, they often fall in repetitive elements and their sequence analysis is often complicated by alignment difficulties. The potential applications of Cot-filtered noncoding (CFNC) DNA in development of DNA markers are discussed.
Genome Research | 2004
F. Alex Feltus; Jun Wan; Stefan R. Schulze; James C. Estill; Ning Jiang; Andrew H. Paterson
Genetics | 2003
John E. Bowers; Colette A. Abbey; Sharon Jane Anderson; Charlene Chang; Xavier Draye; Alison H. Hoppe; Russell Jessup; Cornelia Lemke; Jennifer Lennington; Zhikang Li; Yann-Rong Lin; Sin Chieh Liu; L. J. Luo; Barry S. Marler; Reiguang Ming; Sharon E. Mitchell; Dou Qiang; Kim P. Reischmann; Stefan R. Schulze; D. Neil Skinner; Yue Wen Wang; Stephen Kresovich; K. F. Schertz; Andrew H. Paterson