Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Schauer is active.

Publication


Featured researches published by Stefan Schauer.


Journal of Molecular Recognition | 2009

Label‐free determination of protein–ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry

Matthias C. Jecklin; Stefan Schauer; Christoph E. Dumelin; Renato Zenobi

We performed a systematic comparison of three label‐free methods for quantitative assessment of binding strengths of proteins interacting with small molecule ligands. The performance of (1) nanoelectrospray ionization mass spectrometry (nESI‐MS), (2) surface plasmon resonance (SPR), and (3) isothermal titration calorimetry (ITC) was compared for the determination of dissociation constants (KD). The model system studied for this purpose was the human carbonic anhydrase I (hCAI) with eight known and well characterized sulfonamide inhibitors (Krishnamurthy et al., Chem. Rev. 2008, 108: 946–1051). The binding affinities of the inhibitors chosen vary by more than four orders of magnitude e.g., the KD value determined for ethoxzolamide by nESI‐MS was 5 ± 1 nM and the KD value for sulfanilamide was 145.7 ± 10.0 µM. The agreement of the determined KD values by the three methods investigated was excellent for ethoxzolamide and benzenesulfonamide (variation with experimental error), good for acetazolamide and 4‐carboxybenzenesulfonamide (variation by ∼ one order of magnitude), but poor for others e.g., sulpiride. The accuracies of the KD values are determined, and advantages and drawbacks of the individual methods are discussed. Moreover, we critically evaluate the three examined methods in terms of ease of the measurement, sample consumption, time requirement, and discuss their limitations. Copyright


Journal of Virology | 2012

Avidity Binding of Human Adenovirus Serotypes 3 and 7 to the Membrane Cofactor CD46 Triggers Infection

Hung V. Trinh; Guillaume Lesage; Venus Chennamparampil; Benedikt Vollenweider; Christoph J. Burckhardt; Stefan Schauer; Menzo Jans Emco Havenga; Urs F. Greber; Silvio Hemmi

ABSTRACT The species B human adenoviruses (HAdVs) infect cells upon attaching to CD46 or desmoglein 2 (DSG-2) by one or several of their 12 fiber knob trimers (FKs). To test whether DSG-2 and CD46 simultaneously serve as virus receptors for adenovirus type 3 (Ad3), we performed individual and combined CD46/DSG-2 loss-of-function studies in human lung A549 and 16HBE14o cells. Our results suggest that in these cells, DSG-2 functions as a major attachment receptor for Ad3, whereas CD46 exerts a minor contribution to virus attachment and uptake in the range of ∼10%. However, in other cells the role of CD46 may be more pronounced depending on, e.g., the expression levels of the receptors. To test if avidity allows Ad3/7 to use CD46 as a receptor, we performed gain-of-function studies. The cell surface levels of ectopically expressed CD46 in CHO or human M010119 melanoma cells lacking DSG-2 positively correlated with Ad3/7 infections, while Ad11/35 infections depended on CD46 but less on CD46 levels. Antibody-cross-linked soluble CD46 blocked Ad3/7/11/35 infections, while soluble CD46 alone blocked Ad11/35 but not Ad3/7. Soluble Ad3/7-FKs poorly inhibited Ad3/7 infection of CHO-CD46 cells, illustrating that Ad3/7-FKs bind with low affinity to CD46. This was confirmed by Biacore studies. Ad3/7-FK binding to immobilized CD46 at low density was not detected, unlike that of Ad11/35-FK. At higher CD46 densities, however, Ad3/7-FK bound to CD46 with only 15-fold-higher dissociation constants than those of Ad11/35-FK. These data show that an avidity mechanism for Ad3/7 binding to CD46 leads to infection of CD46-positive cells.


American Journal of Respiratory and Critical Care Medicine | 2016

Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis

Christian A. Schaer; Jeremy W. Deuel; Daniela Schildknecht; Leila Mahmoudi; Inés García-Rubio; Catherine M. Owczarek; Stefan Schauer; Reinhard Kissner; Uddyalok Banerjee; Andre F. Palmer; Donat R. Spahn; David Irwin; Florence Vallelian; Paul W. Buehler; Dominik J. Schaer

RATIONALE Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. OBJECTIVES Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. METHODS We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. MEASUREMENTS AND MAIN RESULTS Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. CONCLUSIONS Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.


PLOS ONE | 2012

Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders.

Markus A. Seeger; Anshumali Mittal; Saroj Velamakanni; Michael Hohl; Stefan Schauer; Ihsene Salaa; Markus G. Grütter; Hendrik W. van Veen

ABC transporters use the energy from binding and hydrolysis of ATP to import or extrude substrates across the membrane. Using ribosome display, we raised designed ankyrin repeat proteins (DARPins) against detergent solubilized LmrCD, a heterodimeric multidrug ABC exporter from Lactococcus lactis. Several target-specific DARPin binders were identified that bind to at least three distinct, partially overlapping epitopes on LmrD in detergent solution as well as in native membranes. Remarkably, functional screening of the LmrCD-specific DARPin pools in L. lactis revealed three homologous DARPins which, when generated in LmrCD-expressing cells, strongly activated LmrCD-mediated drug transport. As LmrCD expression in the cell membrane was unaltered upon the co-expression of activator DARPins, the activation is suggested to occur at the level of LmrCD activity. Consistent with this, purified activator DARPins were found to stimulate the ATPase activity of LmrCD in vitro when reconstituted in proteoliposomes. This study suggests that membrane transporters are tunable in vivo by in vitro selected binding proteins. Our approach could be of biopharmaceutical importance and might facilitate studies on molecular mechanisms of ABC transporters.


Current Microbiology | 2011

Recognition of Host Proteins by Helicobacter Cysteine-Rich Protein C

Bernd Roschitzki; Stefan Schauer; Peer R. E. Mittl

Tetratricopeptide- and sel1-like repeat (SLR) proteins modulate various cellular activities, ranging from transcription regulation to cell-fate control. Helicobacter cysteine-rich proteins (Hcp) consist of several SLRs that are cross-linked by disulfide bridges and have been implicated in host/pathogen interactions. Using pull-down proteomics, several human proteins including Nek9, Hsp90, and Hsc71 have been identified as putative human interaction partners for HcpC. The interaction between the NimA-like protein kinase Nek9 and HcpC has been validated by ELISA and surface plasmon resonance. Recombinant Nek9 is recognized by HcpC with a dissociation constant in the lower micromolar range. This interaction is formed either directly between Nek9 and HcpC or via the formation of a complex with Hsc71. The HcpC homologue HcpA possesses no affinity for Nek9, suggesting that the reported interaction is rather specific for HcpC. These results are consistent with previous observations where Nek9 was targeted upon bacterial or viral invasion. However, further experiments will be required to show that the reported interactions also occur in vivo.


FEBS Journal | 2007

Glutamate recognition and hydride transfer by Escherichia coli glutamyl‐tRNA reductase

Corinna Lüer; Stefan Schauer; Simone Virus; Wolf-Dieter Schubert; Dirk W. Heinz; Jürgen Moser; Dieter Jahn

The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH‐dependent reduction by glutamyl‐tRNA reductase (GluTR) of tRNA‐bound glutamate to glutamate‐1‐semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl‐tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNAGlu mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate–enzyme interaction near the aminoacyl bond to tRNAGlu, by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNAGlu represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a ‘back door’ exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4‐nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure‐based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.


Methods and Applications in Fluorescence | 2016

Single-molecule DNA hybridisation studied by using a modified DNA sequencer: a comparison with surface plasmon resonance data

Jens Sobek; Hubert Rehrauer; Stefan Schauer; D. Fischer; Andrea Patrignani; Stephan Landgraf; Jonas Korlach; Ralph Schlapbach

Current methods for the determination of molecular interactions are widely used in the analytical sciences. To identify new methods, we investigated as a model system the hybridisation of a short 7 nt oligonucleotide labelled with, structurally, very similar cyanine dyes CY3 and DY-547, respectively, to a 34 nt oligonucleotide probe immobilised in a zero-mode waveguide (ZMW) nanostructure. Using a modified commercial off-the-shelf DNA sequencer, we established the principles to measure biomolecular interactions at the single-molecule level. Kinetic data were obtained from trains of fluorescence pulses, allowing the calculation of association and dissociation rate constants (k on, k off). For the 7mer labelled with the positively charged CY3 dye, k on and k off are ~3 larger and ~2 times smaller, respectively, compared with the oligonucleotide labelled with negatively charged DY-547 dye. The effect of neighbouring molecules lacking the 7nt binding sequence on single-molecule rate constants is small. The association rate constants is reduced by only 20–35%. Hybrid dissociation is not affected, since as a consequence of the experimental design, rebinding cannot take place. Results of single-molecule experiments were compared with data obtained from surface plasmon resonance (SPR) performed under comparable conditions. A good correlation for the association rate constants within a factor of 1.5 was found. Dissociation rate constants are smaller by a factor of 2–3 which we interpreted as a result of rebinding to neighbouring probes. Results of SPR measurements tend to systematically underestimate dissociation rate constants. The amount of this deviation depends on the association rate constant and the surface probe density. As a consequence, it is recommended to work at low probe densities to keep this effect small.


PLOS ONE | 2015

HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

Osiris Marroquin Belaunzaran; Sascha Kleber; Stefan Schauer; Martin Hausmann; Flora Nicholls; Maries van den Broek; Sravan Payeli; Adrian Ciurea; Simon Milling; Frank Stenner; Jackie Shaw; Simon Kollnberger; Paul Bowness; Ulf Petrausch; Christoph Renner

Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.


Proceedings of SPIE | 2013

Single molecule interactions studied by using a modified DNA sequencer: a comparison with surface plasmon resonance

Jens Sobek; Stefan Schauer; Hubert Rehrauer; D. Fischer; Andrea Patrignani; Stephan Landgraf; Ralph Schlapbach

In this study we established the principles for using a commercial off-the-shelf DNA sequencer (RS, Pacific Biosciences) to measure biomolecular interactions. Binding between single oligonucleotides immobilized at the bottom of a nanowell to a complementary DNA strand was used as a model system. The influence of the labeling dye on the hybridization of a 7mer oligonucleotide was investigated. The resulting association and dissociation rate constants (kon and koff) and the calculated dissociation constants (Kd) were compared to data obtained from surface plasmon resonance (SPR) measurements. In the present study we identified a good agreement of the determined kinetic constants by the two methods investigated.


Journal of Biological Chemistry | 2004

tRNA Recognition by Glutamyl-tRNA Reductase

Lennart Randau; Stefan Schauer; Alexandre Ambrogelly; Juan C. Salazar; Jürgen Moser; Shun-ichi Sekine; Shigeyuki Yokoyama; Dieter Söll; Dieter Jahn

Collaboration


Dive into the Stefan Schauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Buehler

Center for Biologics Evaluation and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge