Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Trapp is active.

Publication


Featured researches published by Stefan Trapp.


Environmental Science & Technology | 1995

Generic one-compartment model for uptake of organic chemicals by foliar vegetation

Stefan Trapp; Michael Matthies

A differential mass-balance equation for the uptake of organic chemicals into the aerial plant compartment from soil and air is derived. Processes considered are uptake from soil, gaseous deposition, volatilization from leaves, transformation and degradation, and growth. An analytical solution is developed. Chemical data needed are K Ow , K AW , and reaction rate constants. Constant average values for environmental parameters are assumed. Plant properties are typical for grass and green fodder. Calculations for 2,3,7,8-TCDD, and the comparison to a recently tested numerical four-compartment model shows the applicability of the mass-balance approach. The equation could be incorporated into existing multimedia and soil transport models and may be useful for the hazard assessment of contaminated soils.


Pest Management Science | 2000

Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds.

Stefan Trapp

A study on uptake of neutral and dissociating organic compounds from soil solution into roots, and their subsequent translocation, was undertaken using model simulations. The model approach combines the processes of lipophilic sorption, electrochemical interactions, ion trap, advection in xylem and dilution by growth. It needs as input data, apart from plant properties, log KOW, pKa and the valency number of the compound, and pH and chemical concentration in the soil solution. Equilibrium and dynamic (steady-state) models were tested against measured data from several authors, including non-electrolytes as well as weakly acidic and weakly basic compounds. Deviations from the measured values led to further development of the model approach: sorption in the central cylinder may explain the small transpiration stream concentration factor of lipophilic compounds. For non-electrolytes, the model predicted uptake and translocation with high accuracy. For acids and bases, the tendency of the results was satisfactory. The dynamic model and the equilibrium approach gave similar results for the root concentration factor. The calculation of the transpiration stream concentration factor was more accurate with the dynamic model, but still gave deviations up to factor of ten or more. The dominating process for monovalent weak electrolytes was found to be the ion trap effect. © 2000 Society of Chemical Industry


Journal of Soils and Sediments | 2001

Aspects of phytoremediation of organic pollutants

Stefan Trapp; Ulrich Karlson

Phytoremediation is a quite novel technique to clean polluted soils using plants. In theory, phytoremediation methods are cheap, are accepted by the public and, compared to physical or chemical approaches, are ecologically advantageous. Until today, however, there are only a few examples of successful applications. One reason is that the processes involved are complex, and a full clean up may require many years. Plants affect the water balance of a site, they change redox potential and pH, and stimulate microbial activity of the soil. These indirect influences may accelerate degradation in the root zone or reduce leaching of compounds to groundwater. Compounds taken up into plants may be metabolised, accumulated, or volatilised into air. Based on these processes, several phytoremediation methods have been developed: Phytoextraction, rhizofiltra-tion, phytostabilisation, rhizo and phytodegradation, pump and tree, land farming, phytovolatilisation, hydraulic control and more. Already in use are plants (and here willow, poplar and grass) for the degradation of petroleum products, aromatic hydrocarbons (BTEX), chlorinated solvents, explosives and cyanides. However, phytotoxicity and pollutant mass balances were rarely documented. Often, the success of the projects was not controlled, and only estimates can be made about the applicability and the potential of phytoremediation. This lack of experience about possibilities and limitations seems to be a hindrance for a broader use of these techniques.


Environmental Toxicology and Chemistry | 2009

Methods for estimating the bioconcentration factor of ionizable organic chemicals.

Wenjing Fu; Antonio Franco; Stefan Trapp

The bioaccumulation potential is an important criterion in risk assessment of chemicals. Several regressions between bioconcentration factor (BCF) in fish and octanol-water partition coefficient (K(OW)) have been developed for neutral organic compounds, but very few approaches address the BCF of ionizable compounds. A database with BCFs of 73 acids and 65 bases was collected from the literature. The BCF estimation method recommended by the Technical Guidance Document (TGD) for chemical risk assessment in the European Union was tested for ionizing substances using log K(OW) (corrected for the neutral species, log[ f(n) x K(OW)]) and log D (sum of log K(OW) of neutral and ionic molecule, apparent log K(OW)) as predictors. In addition, the method of Meylan et al. (Environ Toxicol Chem 1999; 18:664-672) for ionizable compounds and a dynamic cell model based on the Fick- Nernst-Planck equation were tested. Moreover, our own regressions for the BCF were established from log K(OW) and pK(a). The bioaccumulation of lipophilic compounds depends mainly on their lipophilicity, and the best predictor is log D. Dissociation, the pH-dependent ion trap, and electrical attraction of cations impact the BCF. Several methods showed acceptable results. The TGD regressions gave good predictions when log( f(n) x K(OW)) or log D were used as a predictor instead of log K(OW). The new regressions to log K(OW) and pK(a) performed similarly, with mean errors of approximately 0.4. The method of Meylan et al. did not perform as well. The cell model showed weak results for acids but was among the best methods for bases.


Environmental Toxicology and Chemistry | 2008

Estimation of the soil–water partition coefficient normalized to organic carbon for ionizable organic chemicals

Antonio Franco; Stefan Trapp

The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log Kow of the neutral molecule and the dissociation constant pKa were calculated by the software ACD/Labs. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Ka) normalized to organic carbon (Koc) from log Kow and pKa. The log Koc of strong acids (pKa < 4) was not correlated to these parameters. The regressions derived for weak acids and bases (undissociated at environmental pH) were similar. The highest sorption was found for strong bases (pKa > 7.5), probably due to electrical interactions. Nonetheless, their log Koc was highly correlated to log Kow. For bases, a nonlinear regression was developed, too. The new regression equations are applicable in the whole pKa range of acids, bases, and amphoters and are useful in particular for relatively strong bases and amphoters, for which no predictive methods specifically have been developed so far.


Sar and Qsar in Environmental Research | 2007

Fruit Tree model for uptake of organic compounds from soil and air

Stefan Trapp

The current European risk assessment for chemicals considers only tap water, while in reality other beverages play an important role. A good part of beverages are made from fruits, for example apple juice and vine. A mathematical model was developed to predict uptake of neutral organic chemicals from soil and air into fruits. The new fruit tree model considers eight compartments, i.e. two soil compartments, fine roots, thick roots, stem, leaves, fruits, and air. Chemical equilibrium, advective transport in xylem and phloem, diffusive exchange to soil and air and growth dilution are the main processes. The parameterization is for a square-meter of an apple orchard. The model predicts that polar, non-volatile compounds will effectively be transported from soil to fruits, while lipophilic compounds will preferably accumulate from air into fruits. Results from various experiments show no disagreement with the model predictions. †Presented at the 12th International Workshop on Quantitative Structure-Activity Relationships in Environmental Toxicology (QSAR2006), 8–12 May 2006, Lyon, France.


Critical Reviews in Environmental Science and Technology | 2014

Classification and Modelling of Nonextractable Residue (NER) Formation of Xenobiotics in Soil – A Synthesis

Matthias Kästner; Karolina M. Nowak; Anja Miltner; Stefan Trapp; Andreas Schäffer

This review provides a comprehensive overview about nonextractable residue (NER) formation and attempts to classify the various types. Xenobiotic NER derived from parent pesticides (or other environmental contaminants) and primary metabolites sorbed or entrapped within the soil organic matter (Type I) or covalently bound (Type II) pose a considerably higher risk than those derived from productive biodegradation. However, biogenic nonextractable residues (bioNER) (Type III) resulting from conversion of carbon (or nitrogen) from the compounds into microbial biomass molecules do not pose any risk. Experimental approaches to clearly distinguish between the types are provided, and a model to prospectively estimate bioNER formation in soil is proposed.


Environmental Toxicology and Chemistry | 2002

Dynamic root uptake model for neutral lipophilic organics.

Stefan Trapp

In current European risk assessment, an equilibrium approach is used to estimate chemical uptake from soil into root vegetables. Here a dynamic model for uptake of neutral lipophilic compounds from soil into roots is presented. Using experimental results, it is compared with the equilibrium approach. Very lipophilic compounds (e.g., DDT) diffuse very slowly into plant tissue, so they are likely to remain in the peel of root vegetables. In addition, a dynamic (steady-state) flux model for uptake with transpiration water into thick roots is presented. The model considers input from soil and output to stem with the transpiration stream plus first-order metabolism and dilution by exponential growth. For chemicals with low or intermediate lipophilicity (log Kow < 2), there was no relevant difference between dynamic model and equilibrium approach. For lipophilic compounds, the dynamic model gave concentrations far below the thermodynamic equilibrium. The approach was tested against experimental uptake data of benzo[a]pyrene, polychlorinated biphenyls (PCBs), and chlorobenzenes from soil into carrots. Measured concentrations in carrot peels were up to 100 times higher than in the core. The equilibrium approach can predict concentrations in the peels, but for carrot cores and for the whole carrot, the flux model is superior and should be preferred for a more realistic risk assessment.


PLOS ONE | 2011

Identification of Novel Functional Inhibitors of Acid Sphingomyelinase

Johannes Kornhuber; Markus Muehlbacher; Stefan Trapp; Stefanie Pechmann; Astrid Friedl; Martin Reichel; Christiane Mühle; Lothar Terfloth; Teja W. Groemer; Gudrun M. Spitzer; Klaus R. Liedl; Erich Gulbins; Philipp Tripal

We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimers disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinskis Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans.


Environmental Toxicology and Chemistry | 2009

Influence of soil pH on the sorption of ionizable chemicals: Modeling advances

Antonio Franco; Wenjing Fu; Stefan Trapp

The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

Collaboration


Dive into the Stefan Trapp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arno Rein

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Matthias Kästner

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Antonio Franco

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Charlotte Nielsen Legind

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Fabio Polesel

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp Mayer

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Bauer-Gottwein

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge