Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania De Lucchini is active.

Publication


Featured researches published by Stefania De Lucchini.


Biochemical Journal | 2005

Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration

Mariarita Bianchi; Stefania De Lucchini; Oriano Marin; David L. Turner; Steven K. Hanks; Emma Villa-Moruzzi

In addition to tyrosine sites, FAK (focal adhesion kinase) is phosphorylated on multiple serine residues. In the present study, the regulation of two of these sites, Ser-722 (S1) and Ser-911 (S4), was investigated. Phosphorylation of S1 (but not S4) decreased in resuspended cells, and recovered during spreading on fibronectin, indicating adhesion-dependent regulation. GSK3 (glycogen synthase kinase 3) inhibitors decreased S1 phosphorylation, and siRNA (short interfering RNA) silencing indicated further the involvement of GSK3beta. Furthermore, GSK3beta was found to become activated during cell spreading on fibronectin, and to physically associate with FAK. S1 phosphorylation was observed to decrease in wounded cell monolayers, while GSK3beta underwent inactivation and later was observed to increase to the original level within 24 h. Direct phosphorylation of S1, requiring pre-phosphorylation of Ser-726 in the +4 position, was demonstrated using purified GSK3 and a synthetic peptide containing FAK residues 714-730. An inhibitory role for S1 phosphorylation in FAK signalling was indicated by findings that both alanine substitution for S1 and dephosphorylation of S1 by PP1 (serine/threonine protein phosphatase type-1) resulted in an increase in FAK kinase activity; likewise, this role was also shown by cell treatment with the GSK3 inhibitor LiCl. The inhibitory role was confirmed by the finding that cells expressing FAK with alanine substitution for S1 displayed improved cell spreading and faster migration in wound-healing and trans-well assays. Finally, the finding that S1 phosphorylation increased in cells treated with the PP1 inhibitor okadaic acid indicated targeting of this site by PP1. These results indicate an additional mechanism for regulation of FAK activity during cell spreading and migration, involving Ser-722 phosphorylation modulated through the competing actions of GSK3beta and PP1.


Molecular Brain Research | 2003

Expression of 5-HT2B and 5-HT2C receptor genes is associated with proliferative regions of Xenopus developing brain and eye.

Stefania De Lucchini; Michela Ori; Martina Nardini; Silvia Marracci; Irma Nardi

Here we clone the Xenopus 5-HT2B receptor cDNA and describe its spatio-temporal mRNA expression within the developing larval brain and visual system. Expression of the 5-HT2B transcripts is compared to that of 5-HT2C as well as proliferation and neurogenic markers. In developing brain and retina, 5-HT2B and 2C mRNAs are mainly expressed in proliferative regions. We suggest that these receptors may play a role in the larval secondary neurogenesis by mediating mitogenic effects of serotonin.


Development | 2010

Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus

Elisa Reisoli; Stefania De Lucchini; Irma Nardi; Michela Ori

Serotonin (5-HT) is a neuromodulator that plays many different roles in adult and embryonic life. Among the 5-HT receptors, 5-HT2B is one of the key mediators of 5-HT functions during development. We used Xenopus laevis as a model system to further investigate the role of 5-HT2B in embryogenesis, focusing on craniofacial development. By means of gene gain- and loss-of-function approaches and tissue transplantation assays, we demonstrated that 5-HT2B modulates, in a cell-autonomous manner, postmigratory skeletogenic cranial neural crest cell (NCC) behavior without altering early steps of cranial NCC development and migration. 5-HT2B overexpression induced the formation of an ectopic visceral skeletal element and altered the dorsoventral patterning of the branchial arches. Loss-of-function experiments revealed that 5-HT2B signaling is necessary for jaw joint formation and for shaping the mandibular arch skeletal elements. In particular, 5-HT2B signaling is required to define and sustain the Xbap expression necessary for jaw joint formation. To shed light on the molecular identity of the transduction pathway acting downstream of 5-HT2B, we analyzed the function of phospholipase C beta 3 (PLC) in Xenopus development and showed that PLC is the effector of 5-HT2B during craniofacial development. Our results unveiled an unsuspected role of 5-HT2B in craniofacial development and contribute to our understanding of the interactive network of patterning signals that is involved in the development and evolution of the vertebrate mandibular arch.


Chromosoma | 1986

Cytogenetics of the European plethodontid salamanders of the genus Hydromantes (Amphibia, Urodela)

Irma Nardi; Stefania De Lucchini; Renata Batistoni; F. Andronico

A karyological analysis was carried out on different European species of the genus Hydromantes (Plethodontidae). All the species examined share the same chromosome number (2n=28) and, with the exception represented by pair XIV, morphologically similar karyotypes. While the karyotypes display a similar distribution — mainly centromeric and pericentric — of C-heterochromatin, quantitative variations in pericentric heterochromatin are observed among species. In the continental species Hydromantes italicus and ambrosii as well as in the eastern Sardinian species imperialis, flavus and specie nova, pair XIV consists of heteromorphic sex chromosomes of the XX/XY type. It is proposed that the differentiation of the Y might have taken place through the occurrence of a structural rearrangement, such as a pericentric inversion, starting from a hypothetical, homomorphic pair XIV. A sex-related heteromorphism is not found in the western Sardinian species H. genei. A further karyological differentiation among these species concerns the position of the nucleolus organizing region (NOR), which is located on chromosome XII (H. italicus and ambrosii) or on chromosome X, close to the centromere (H. genei, H. imperialis and H. specie nova), or in an intercalary position (H. flavus). The location and the number of the 5 S DNA sites have been conserved during species divergence. On the basis of these karyological data, as well as of results obtained through a preliminary restriction enzyme analysis of the ribosomal and genomic DNAs, the phyletic relationships among the European Hydromantes species are discussed.


Molecular and Cellular Neuroscience | 2005

5-HT2B-mediated serotonin signaling is required for eye morphogenesis in Xenopus.

Stefania De Lucchini; Michela Ori; Federico Cremisi; Martina Nardini; Irma Nardi

In this paper, we show that serotonin, via 5-HT2B receptor, is involved in Xenopus retinal histogenesis and eye morphogenesis by supporting cell proliferation and survival. To analyze the 5-HT2B function in retinal development, we performed a loss-of-function study using both a pharmacological and a morpholino antisense oligonucleotide approach. Gain-of-function experiments were made by microinjecting 5-HT2B mRNA. Misregulation of the 5-HT2B receptor activity causes alterations in the proliferation rate and survival of retinal precursors, resulting in abnormal retinal morphology, where lamination is severely compromised. Clones derived from lipofected retinoblasts that overexpress 5-HT2B show an increase in the relative percentage of ganglion cells, possibly due to protection from apoptosis. This effect is reversed in clones lipofected with a 5-HT2B-specific morpholino. We hypothesize that the survival of the correct number of ganglion cells is controlled by 5-HT/5-HT2B signaling. Serotonin, acting as a neurotrophic factor, may contribute by refining retinal connectivity and cytoarchitecture.


Molecular Brain Research | 2001

The serotonin 5-HT2B receptor from the puffer fish Tetraodon fluviatilis: cDNA cloning, genomic organization and alternatively spliced variants

Stefania De Lucchini; Silvia Marracci; Irma Nardi

We cloned the 5-HT2B serotonin receptor from the puffer fish Tetraodon fluviatilis. Two cDNAs differing in length because of the use of alternative polyadenylation sites were isolated. We partly characterized the genomic organization of the 5-HT2B gene and we found two introns conserved in position between the puffer fish and mammals. In addition, four splice variants which would generate truncated forms of the receptor were detected.


Chromosoma | 1997

MOLECULAR STRUCTURE OF THE RDNA INTERGENIC SPACER (IGS) IN TRITURUS : IMPLICATIONS FOR THE HYPERVARIABILITY OF RDNA LOCI

Stefania De Lucchini; F. Andronico; Irma Nardi

Abstract. Ribosomal DNA (rDNA) variation in the species Triturus vulgaris meridionalis (Amphibia, Urodela) is remarkable because of unusually high intraspecific variability in the number and distribution of ribosomal loci in the karyotype; in addition, portions of the intergenic spacer (IGS) are clustered at chromosomal loci where they are not associated with ribosomal 18S and 28S RNA genes. These clusters are referred to as extraribosomal, and they appear to consist mostly of repetitive BamHI elements. In this paper, we report the complete nucleotide sequence of an IGS of T. v. meridionalis; this structural analysis is aimed to get insight into the molecular mechanism(s) of spreading of the ribosomal cistrons as well as its possible functional significance. We found that the IGS of T. vulgaris has a modular structure: modular repetitive elements contain sequences possibly related to the regulation of transcription of the ribosomal units. In particular, both ribosomal and extraribosomal IGS elements contain presumptive enhancers. Interestingly, the enhancer-containing region is mostly conserved between ribosomal and extraribosomal elements, while mutations accumulate in a region characterized by repetitions of a simple sequence motif, that we consider as a possible recombination hotspot. Our data suggest that extraribosomal elements most probably originated from ribosomal enhancer-containing elements able to move independently from the ribosomal unit at novel chromosomal positions, perhaps with the aid of the simple repetitive motif. We argue that a similar mechanism may lead to the spreading of complete repetition units as well, giving rise to multiple, and variable, ribosomal sites. We propose that hypervariability in the number and distribution of the rDNA loci, as seen in T. vulgaris, is a further mechanism to ensure redundancy, which seems to be an intrinsic property of rDNA biology, the occurrence of IGS elements independently clustered at separate chromosomal loci being a by-product of this mechanism.


Molecular and Cellular Biochemistry | 2005

Reciprocally interacting domains of protein phosphatase 1 and focal adhesion kinase

Mariarita Bianchi; Stefania De Lucchini; Michele Vietri; Emma Villa-Moruzzi

Protein phosphatase 1δ (PP1δ) localizes to focal adhesions and associates with the focal adhesion kinase (FAK). In the present work we used deletion mutants of PP1δ and FAK to detect their reciprocally interacting domains. Dissection of PP1δ indicated 194–260 as the shortest FAK-interacting domain among those tested. Domain 194–260 encompasses several sites involved in catalysis, indirectly confirming that FAK is a PP1 substrate. Mutation of one of these sites, R220 (R220S or R220Q), did not abolish but on the contrary increased the ability of 194–260 to pull-down FAK. Such property might be exploited to detect new potential PP1 substrates. Among the FAK deletion mutants, only the C-terminal domain (684–1053, also known as FRNK) pulled-down a significant amount of PP1. The PP1 eluted from a GST-FRNK affinity column displayed Mr of 35,000 when analyzed by gel-filtration on FPLC Superose 12, indicating the presence of an isolated PP1 catalytic subunit.


The International Journal of Developmental Biology | 2013

Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus

Michela Ori; Stefania De Lucchini; Giulia Marras; Irma Nardi

The serotonin receptor 5-HT2B has been shown to be critically important during embryogenesis as the knockout of this gene in mice causes heart defects and embryonic lethality that impairs further analyses on other embryonic cell and tissue types. In the present review, we highlight how the use of Xenopus laevis, an alternative vertebrate model suitable for gene loss and gain of function analyses, has contributed to our understanding of the role of 5-HT2B signaling during development. In vivo studies showed that 5-HT2B signaling is not only required for heart development, but that it also has a crucial role in ocular and craniofacial morphogenesis, being involved in shaping the first branchial arch and the jaw joint, in retinogenesis and possibly in periocular mesenchyme development. These findings may be relevant for our understanding of congenital defects including human birth malformations. In addition, 5-HT2B appears to be required for the therapeutic actions of selective serotonin reuptake inhibitors commonly prescribed as antidepressant drugs to pregnant and lactating women. We discuss how the understanding of the molecular basis of serotonin signaling in a suitable animal embryogenesis model may open new lines of investigations and therapies in humans.


Brain Research | 2008

Overexpression of 5-HT2B receptor results in retinal dysplasia and defective ocular morphogenesis in Xenopus embryos.

Elisa Reisoli; Stefania De Lucchini; Tonino Anelli; Stefano Biagioni; Irma Nardi; Michela Ori

In vertebrates, eye development comprises inductive and morphogenetic events that are finely regulated by the coordinated action of many intrinsic and extrinsic factors. Recent evidence suggested that neurotransmitters could be enumerated by the extracellular signals contributing to the retinal and eye development. We showed that, among these neuromodulators, serotonin acting via the 5-HT2B receptor, is involved in the control of retinoblasts proliferation and survival in Xenopus embryogenesis. To further clarify the role of 5-HT2B receptor in ocular development, we performed a gene gain of function analysis in vitro and in vivo in Xenopus embryos. We confirmed that 5-HT2B overexpression is per se sufficient to promote cell proliferation in a neuroblastoma cell line. The in vivo experiments revealed that an over serotonin signaling, via 5-HT2B receptors, resulted in the formation of eyes with an irregular form, position and orientation. Interestingly, we showed 5-HT2B gene expression in periocular mesenchyme that represents a key signaling center required for a correct eye morphogenesis. Moreover, the 5-HT2B receptor overexpressing retina, displays a disorganization of the typical laminar structure with the presence of retinal cells scattered in ectopic positions or forming rosette like structures. On the whole our data support the idea that serotonin signalling has to be finely regulated during eye development to allow a correct retinogenesis and may participate in the correct orchestration and synergism of all the factors and events that regulate eye morphogenesis in ocular and periocular tissues.

Collaboration


Dive into the Stefania De Lucchini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge