Stefania Francesconi
Curie Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefania Francesconi.
Journal of Physics: Conference Series | 2011
Pierre-Marie Girard; Stefania Francesconi; M Pozzebon; D Graindorge; Patrick J. Rochette; R Drouin; Evelyne Sage
UVA has long been known for generating an oxidative stress in cells. In this paper we review the different types of DNA damage induced by UVA, i.e. strand breaks, bipyrimidine photoproducts, and oxidatively damaged bases. Emphasis is given to the mechanism of formation that is further illustrated by the presentation of new in vitro data. Examples of oxidation of proteins involved in DNA metabolism are also given.
Molecular and Cellular Biology | 2005
Ada Collura; Joël Blaisonneau; Giuseppe Baldacci; Stefania Francesconi
ABSTRACT Living organisms experience constant threats that challenge their genome stability. The DNA damage checkpoint pathway coordinates cell cycle progression with DNA repair when DNA is damaged, thus ensuring faithful transmission of the genome. The spindle assembly checkpoint inhibits chromosome segregation until all chromosomes are properly attached to the spindle, ensuring accurate partition of the genetic material. Both the DNA damage and spindle checkpoint pathways participate in genome integrity. However, no clear connection between these two pathways has been described. Here, we analyze mutants in the BRCT domains of fission yeast Crb2, which mediates Chk1 activation, and provide evidence for a novel function of the Chk1 pathway. When the Crb2 mutants experience damaged replication forks upon inhibition of the religation activity of topoisomerase I, the Chk1 DNA damage pathway induces sustained activation of the spindle checkpoint, which in turn delays metaphase-to-anaphase transition in a Mad2-dependent fashion. This new pathway enhances cell survival and genome stability when cells undergo replicative stress in the absence of a proficient G2/M DNA damage checkpoint.
PLOS ONE | 2013
Pierre-Marie Girard; Dany Graindorge; Violetta Smirnova; Pascal Rigolet; Stefania Francesconi; Susan Scanlon; Evelyne Sage
In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR), a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3) in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack. By non-reducing SDS-PAGE we show that many different oxidants induce hXRCC3 oxidation that is monitored in Chinese hamster ovarian (CHO) cells by increased electrophoretic mobility of the protein and in human cells by a slight decrease of its immunodetection. In both cell types, hXRCC3 oxidation was reversed in few minutes by cellular reducing systems. Depletion of intracellular glutathione prevents hXRCC3 oxidation only after UVA exposure though depending on the type of photosensitizer. In addition, we show that hXRCC3 expressed in CHO cells localizes both in the cytoplasm and in the nucleus. Mutating all hXRCC3 cysteines to serines (XR3/S protein) does not affect the subcellular localization of the protein even after exposure to camptothecin (CPT), which typically induces DNA damages that require HR to be repaired. However, cells expressing mutated XR3/S protein are sensitive to CPT, thus highlighting a defect of the mutant protein in HR. In marked contrast to CPT treatment, oxidative stress induces relocalization at the chromatin fraction of both wild-type and mutated protein, even though survival is not affected. Collectively, our results demonstrate that the DNA repair protein hXRCC3 is a target of ROS induced by environmental factors and raise the possibility that the redox environment might participate in regulating the HR pathway.
Genes to Cells | 2002
Stefania Francesconi; Monique Smeets; Muriel Grenon; Jeanne Tillit; Joël Blaisonneau; Giuseppe Baldacci
Background: Chk1 kinase is activated by phosphorylation at serine‐345 by Rad3 checkpoint kinase and is required for DNA damage checkpoint in late S and G2 phase of S. pombe cell cycle. We studied the ability of two chk1 mutants, chk1‐1 and chk1‐2, to undergo phosphorylation and to delay cell cycle progression in response to different types of DNA lesions.
Cell Cycle | 2008
Delphine Dardalhon; Anne Reynaud Angelin; Giuseppe Baldacci; Evelyne Sage; Stefania Francesconi
UVA radiation, the most abundant solar UV radiation reaching Earth’s surface, induces oxidative stress through formation of reactive oxygen species (ROS) that can damage different cell components. Because of the broad spectrum of the possible targets of ROS, the cellular response to this radiation is complex. While extensive studies have allowed dissecting the effects of UVB, UVC and gamma radiations on cell cycle progression, few studies have dealt with the effect of UVA so far. Here we use Schizosaccharomyces pombe as a model organism to study biological effects of UVA radiation in living organisms. Through analysis of cell cycle progression in different mutant backgrounds we demonstrate that UVA delays cell cycle progression in G2 cells in a dose dependent manner. However, despite Chk1 phosphorylation and in contrast to treatments with others genotoxic agents, this cell cycle delay is only partially dependent on DNA integrity checkpoint pathway. We also demonstrate that UVA irradiation of S phase cells slows down DNA replication in a checkpoint independent manner, activates Chk1 to prevent entry into abnormal mitosis and induces formation of Rad22 (homologue to human Rad52) foci. This indicates that DNA structure integrity is challenged. Furthermore, the cell cycle delay observed in checkpoint mutants exposed to UVA is not abolished when stress response pathway is inactivated or when down regulation of protein synthesis is prevented. In conclusion, fission yeast is a useful model to dissect the fundamental molecular mechanisms involved in UVA response that may contribute to skin cancer and aging.
Genes to Cells | 2003
Monique Smeets; Stefania Francesconi; Giuseppe Baldacci
Background: In eukaryotic cells DNA structure checkpoints organize the cellular responses of DNA repair and transient cell cycle arrest and thereby ensure genomic stability. To investigate the exact role of crb2+ in the DNA damage checkpoint response, a genetic screen was carried out in order to identify suppressors of the conditional MMS sensitivity of a crb2‐1 mutant. Here we report the isolation of rhp51+ as a multicopy suppressor.
PLOS ONE | 2013
Clémentine Beuzelin; Irini Evnouchidou; Pascal Rigolet; Anne Cauvet-Burgevin; Pierre Marie Girard; Delphine Dardalhon; Slobodan Culina; Abdelaziz Gdoura; Peter van Endert; Stefania Francesconi
Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimers disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1). Reduced sensitivity to tunicamycin was associated with a smaller number of cells undergoing apoptosis. Wild type levels of tunicamycin sensitivity were restored in iph1 null cells when the TORC1 complex was inhibited by rapamycin or by heat inactivation of the Tor2 kinase. Although Iph1 cleaved hallmark IDE substrates including insulin efficiently, its role in the ER stress response was independent of its catalytic activity since expression of inactive Iph1 restored normal sensitivity. Importantly, wild type as well as inactive human IDE complemented gene-invalidated yeast cells when expressed at the genomic locus under the control of iph1+ promoter. These results suggest that IDE has a previously unknown function unrelated to substrate cleavage, which links sensitivity to ER stress to a pro-survival role of the TORC1 pathway.
PLOS ONE | 2012
Angela Bellini; Pierre-Marie Girard; Sarah Lambert; Ludovic Tessier; Evelyne Sage; Stefania Francesconi
Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.
PLOS ONE | 2014
Angela Bellini; Pierre-Marie Girard; Ludovic Tessier; Evelyne Sage; Stefania Francesconi
Rad52 is a key protein in homologous recombination (HR), a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA) that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G) in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.
Nucleic Acids Research | 2003
Peter Meister; Mickaël Poidevin; Stefania Francesconi; Isabelle Tratner; Patrick Zarzov; Giuseppe Baldacci