Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Girotto is active.

Publication


Featured researches published by Stefania Girotto.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS

Lucia Banci; Ivano Bertini; Armando Durazo; Stefania Girotto; Edith Butler Gralla; Manuele Martinelli; Joan Selverstone Valentine; Miguela Vieru; Julian P. Whitelegge

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder selectively affecting motor neurons; 90% of the total cases are sporadic, but 2% are associated with mutations in the gene coding for the antioxidant enzyme copper–zinc superoxide dismutase (SOD1). The causes of motor neuron death in ALS are poorly understood in general, but for SOD1-linked familial ALS, aberrant oligomerization of SOD1 mutant proteins has been strongly implicated. In this work, we show that wild-type human SOD1, when lacking both its metal ions, forms large, stable, soluble protein oligomers with an average molecular mass of ≈650 kDa under physiological conditions, i.e., 37°C, pH 7.0, and 100 μM protein concentration. It further is shown here that intermolecular disulfide bonds are formed during oligomerization and that Cys-6 and Cys-111 are implicated in this bonding. The formation of the soluble oligomers was monitored by their ability to enhance the fluorescence of thioflavin T, a benzothiazole dye that increases in fluorescence intensity upon binding to amyloid fibers, and by disruption of this binding upon addition of the chaotropic agent guanidine hydrochloride. Our results suggest a general, unifying picture of SOD1 aggregation that could operate when wild-type or mutant SOD1 proteins lack their metal ions. Although we cannot exclude other mechanisms in SOD1-linked familial ALS, the one proposed here has the strength of explaining how a large and diverse set of SOD1 mutant proteins all could lead to disease through the same mechanism.


PLOS ONE | 2008

SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization

Lucia Banci; Ivano Bertini; Mirela Boca; Stefania Girotto; Manuele Martinelli; Joan Selverstone Valentine; Miguela Vieru

There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants

Lucia Banci; Ivano Bertini; Mirela Boca; Vito Calderone; Francesca Cantini; Stefania Girotto; Miguela Vieru

The structural and dynamical properties of the metal-free form of WT human superoxide dismutase 1 (SOD1) and its familial amyotrophic lateral sclerosis (fALS)-related mutants, T54R and I113T, were characterized both in solution, through NMR, and in the crystal, through X-ray diffraction. We found that all 3 X-ray structures show significant structural disorder in 2 loop regions that are, at variance, well defined in the fully-metalated structures. Interestingly, the apo state crystallizes only at low temperatures, whereas all 3 proteins in the metalated form crystallize at any temperature, suggesting that crystallization selects one of the most stable conformations among the manifold adopted by the apo form in solution. Indeed, NMR experiments show that the protein in solution is highly disordered, sampling a large range of conformations. The large conformational variability of the apo state allows the free reduced cysteine Cys-6 to become highly solvent accessible in solution, whereas it is essentially buried in the metalated state and the crystal structures. Such solvent accessibility, together with that of Cys-111, accounts for the tendency to oligomerization of the metal-free state. The present results suggest that the investigation of the solution state coupled with that of the crystal state can provide major insights into SOD1 pathway toward oligomerization in relation to fALS.


Journal of Biological Chemistry | 2003

Rapid formation of compound II and a tyrosyl radical in the Y229F mutant of Mycobacterium tuberculosis catalase-peroxidase disrupts catalase but not peroxidase function.

Shengwei Yu; Stefania Girotto; Xiangbo Zhao; Richard S. Magliozzo

Catalase-peroxidases (KatG), which belong to Class I heme peroxidase enzymes, have high catalase activity and substantial peroxidase activity. The Y229F mutant of Mycobacterium tuberculosis KatG was prepared and characterized to investigate the functional role of this conserved residue unique to KatG enzymes. Purified, overexpressed KatG[Y229F] exhibited severely reduced steady-state catalase activity while the peroxidase activity was enhanced. Optical stopped-flow experiments showed rapid formation of Compound (Cmpd) II (oxyferryl heme intermediate) in the reaction of resting KatG[Y229F] with peroxyacetic acid or chloroperoxybenzoic acid, without detectable accumulation of Cmpd I (oxyferryl heme π-cation radical intermediate), the latter being readily observed in the wild-type enzyme under similar conditions. Facile formation of Cmpd III (oxyferrous enzyme) also occurred in the mutant in the presence of micromolar hydrogen peroxide. Thus, the lost catalase function may be explained in part because of formation of intermediates that do not participate in catalatic turnover. The source of the reducing equivalent required for generation of Cmpd II from Cmpd I was shown by rapid freeze-quench electron paramagnetic resonance spectroscopy to be a tyrosine residue, just as in wild-type KatG. The kinetic coupling of radical generation and Cmpd II formation was shown in KatG[Y229F]. Residue Y229, which is a component of a newly defined three amino acid adduct in catalase-peroxidases, is critically important for protecting the catalase activity of KatG.


Journal of Biological Chemistry | 2012

Dopamine-derived Quinones Affect the Structure of the Redox Sensor DJ-1 through Modifications at Cys-106 and Cys-53

Stefania Girotto; Mattia Sturlese; Massimo Bellanda; Isabella Tessari; Rekha Cappellini; Marco Bisaglia; Luigi Bubacco; Stefano Mammi

Background: DJ-1, a protein involved in PD, protects neurons by acting as an oxidative stress sensor. Results: Through adduct formation on DJ-1 cysteines, DAQs induce both structural perturbations and uncoupling of the sensor function. Conclusion: Cys-53 is the most reactive, but Cys-106 modification induces the most severe effects. Significance: A correlation between DJ-1 DAQ-dependent impairment and the degeneration of dopaminergic neurons observed in PD is suggested. The physiological role of DJ-1, a protein involved in familial Parkinson disease is still controversial. One of the hypotheses proposed indicates a sensor role for oxidative stress, through oxidation of a conserved cysteine residue (Cys-106). The association of DJ-1 mutations with Parkinson disease suggests a loss of function, specific to dopaminergic neurons. Under oxidative conditions, highly reactive dopamine quinones (DAQs) can be produced, which can modify cysteine residues. In cellular models, DJ-1 was found covalently modified by dopamine. We analyzed the structural modifications induced on human DJ-1 by DAQs in vitro. We described the structural perturbations induced by DAQ adduct formation on each of the three cysteine residues of DJ-1 using specific mutants. Cys-53 is the most reactive residue and forms a covalent dimer also in SH-SY5Y DJ-1-transfected cells, but modification of Cys-106 induces the most severe structural perturbations; Cys-46 is not reactive. The relevance of these covalent modifications to the several functions ascribed to DJ-1 is discussed in the context of the cell response to a dopamine-derived oxidative insult.


Journal of Biological Chemistry | 2004

Evidence for Radical Formation at Tyr-353 in Mycobacterium tuberculosis Catalase-Peroxidase (KatG)

Xiangbo Zhao; Stefania Girotto; Shengwei Yu; Richard S. Magliozzo

Mycobacterium tuberculosis KatG is a heme-containing catalase-peroxidase responsible for activation, through its peroxidase cycle, of the front line antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide). Formation of Compound I (oxyferryl heme-porphyrin π-cation radical), the classical peroxidase intermediate generated when the resting enzyme turns over with alkyl peroxides, is rapidly followed by production of a protein-centered tyrosyl radical in this enzyme. In our efforts to identify the residue at which this radical is formed, nitric oxide was used as a radical scavenging reagent. Quenching of the tyrosyl radical generated in the presence of NO was shown using electron paramagnetic resonance spectroscopy, and formation of nitrotyrosine was confirmed by proteolytic digestion followed by high performance liquid chromatography analysis of the NO-treated enzyme. These results are consistent with formation of nitrosyltyrosine by addition of NO to tyrosyl radical and oxidation of this intermediate to nitrotyrosine. Two predominant nitrotyrosine-containing peptides were identified that were purified and sequenced by Edman degradation. Both peptides were derived from the same M. tuberculosis KatG sequence spanning residues 346–356 with the amino acid sequence SPAGAWQYTAK, and both peptides contained nitrotyrosine at residue 353. Some modification of Trp-351 most probably into nitrosotryptophan was also found in one of the two peptides. Control experiments using denatured KatG or carried out in the absence of peroxide did not produce nitrotyrosine. In the mutant enzyme KatG(Y353F), which was constructed using site-directed mutagenesis, a tyrosyl radical was also formed upon turnover with peroxide but in poor yield compared with wild-type KatG. Residue Tyr-353 is unique to M. tuberculosis KatG and may play a special role in the function of this enzyme.


Journal of Biological Chemistry | 2007

Radical Sites in Mycobacterium tuberculosis KatG Identified Using Electron Paramagnetic Resonance Spectroscopy, the Three-dimensional Crystal Structure, and Electron Transfer Couplings

Kalina Ranguelova; Stefania Girotto; Gary J. Gerfen; Shengwei Yu; Javier Suarez; Leonid Metlitsky; Richard S. Magliozzo

Catalase-peroxidase (KatG) from Mycobacterium tuberculosis, a Class I peroxidase, exhibits high catalase activity and peroxidase activity with various substrates and is responsible for activation of the commonly used antitubercular drug, isoniazid (INH). KatG readily forms amino acid-based radicals during turnover with alkyl peroxides, and this work focuses on extending the identification and characterization of radicals forming on the millisecond to second time scale. Rapid freeze-quench electron paramagnetic resonance spectroscopy (RFQ-EPR) reveals a change in the structure of the initially formed radical in the presence of INH. Heme pocket binding of the drug and knowledge that KatG[Y229F] lacks this signal provides evidence for radical formation on residue Tyr229. High field RFQ-EPR spectroscopy confirmed a tryptophanyl radical signal, and new analyses of X-band RFQ-EPR spectra also established its presence. High field EPR spectroscopy also confirmed that the majority radical species is a tyrosyl radical. Site-directed mutagenesis, along with simulations of EPR spectra based on x-ray structural data for particular tyrosine and tryptophan residues, enabled assignments based on predicted hyperfine coupling parameters. KatG mutants W107F, Y229F, and the double mutant W107F/Y229F showed alteration in type and yield of radical species. Results are consistent with formation of a tyrosyl radical reasonably assigned to residue Tyr229 within the first few milliseconds of turnover. This is followed by a mixture of tyrosyl and tryptophanyl radical species and finally to only a tyrosyl radical on residue Tyr353, which lies more distant from the heme. The radical processing of enzyme lacking the Trp107-Tyr229-Met255 adduct (found as a unique structural feature of catalase-peroxidases) is suggested to be a reasonable assignment of the phenomena.


Scientific Reports | 2017

DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function.

Nicoletta Plotegher; Giulia Berti; Emanuele Ferrari; Isabella Tessari; Manuela Zanetti; L. Lunelli; Elisa Greggio; Marco Bisaglia; Marina Veronesi; Stefania Girotto; M. Dalla Serra; Carla Perego; Luigi Casella; Luigi Bubacco

Parkinson’s disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration.


Journal of Biological Chemistry | 2003

Reduced affinity for Isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance.

Shengwei Yu; Stefania Girotto; Chiuhong Lee; Richard S. Magliozzo


Journal of Biological Chemistry | 2002

Identification and characterization of tyrosyl radical formation in Mycobacterium tuberculosis catalase-peroxidase (KatG).

Salem Chouchane; Stefania Girotto; Shengwei Yu; Richard S. Magliozzo

Collaboration


Dive into the Stefania Girotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengwei Yu

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Banci

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salem Chouchane

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge