Stefania Monterisi
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefania Monterisi.
Molecular Biology of the Cell | 2010
Maria Favia; Lorenzo Guerra; Teresa Fanelli; Rosa Angela Cardone; Stefania Monterisi; Francesca Di Sole; Stefano Castellani; Mingmin Chen; Ursula Seidler; Stephan J. Reshkin; Massimo Conese; Valeria Casavola
NHERF1 overexpression increases functional apical expression of F508del CFTR in CFBE41o- cells. Here, we show that this occurs via the formation of the multiprotein complex NHERF1-phosphoezrin-actin, which provides a regulated linkage between F508del CFTR and the actin cytoskeleton resulting in an increased F508del CFTR stability in the membrane.
Journal of Cell Science | 2012
Stefania Monterisi; Maria Favia; Lorenzo Guerra; Rosa Angela Cardone; Domenico Marzulli; Stephan J. Reshkin; Valeria Casavola; Manuela Zaccolo
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na+/H+ exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1–ezrin–actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Journal of Cell Biology | 2012
Anna Terrin; Stefania Monterisi; Alessandra Stangherlin; Anna Zoccarato; Andreas Koschinski; Nicoletta C. Surdo; Marco Mongillo; Akira Sawa; Niove E. Jordanides; Joanne C. Mountford; Manuela Zaccolo
Control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals through PKA and PDE4D3 interaction with the A kinase anchoring protein AKAP9.
Handbook of experimental pharmacology | 2008
Marco Berrera; G. Dodoni; Stefania Monterisi; V. Pertegato; I. Zamparo; Manuela Zaccolo
The study of cAMP signaling has received a renewed impulse since the recognition that a key aspect of this pathway is the tight spatial control of signal propagation. The study of the mechanism that regulates cAMP signaling in space and time has prompted the development of new methodological approaches to detect cAMP in intact cells. Over the last decades, techniques to assess cAMP concentration with high spatial and temporal resolution in living cells have been elaborated that are based on fluorescent molecules and the phenomenon of fluorescence resonance energy transfer (FRET). A FRET-based indicator of cAMP concentration is typically a protein, including two fluorophores that are linked to a cAMP-binding domain. Binding of cAMP causes a change in the protein conformation and, as a consequence, in the distance between the fluorophores, thus altering the energy transfer between them. Several FRET indicators have been developed, differing in their affinity for cAMP, kinetic features and intracellular targeting. Such indicators enable the measurement of cAMP fluctuations as they happen in the complex intracellular environment and are proving to be effective tools to dissect compartmentalized cAMP signaling.
Biology of the Cell | 2008
Teresa Fanelli; Rosa Angela Cardone; Maria Favia; Lorenzo Guerra; Manuela Zaccolo; Stefania Monterisi; Teresa De Santis; Stefania Maria Riccardi; Stephan J. Reshkin; Valeria Casavola
Background information. CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, ΔF508 (deletion of Phe‐508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na+/H+‐exchanger regulatory factor 1) in CF airway cells induced both a redistribution of ΔF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)‐dependent activation of ΔF508CFTR‐dependent chloride secretion. In view of the potential importance of the targeted up‐regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o−, with subsequent rescue of apical ΔF508CFTR chloride transport activity.
British Journal of Pharmacology | 2013
Stefania Monterisi; Valeria Casavola; Manuela Zaccolo
The cystic fibrosis conductance regulator (CFTR) is a cAMP‐regulated Cl− channel expressed predominantly at the apical membrane of secreting epithelial cells. Mutations in the CFTR gene lead to cystic fibrosis, the most frequent genetic disease in the Caucasian population. The most common mutation, a deletion of phenylalanine at position 508 (F508del), impairs CFTR folding and chloride channel function. Although an intense effort is under way to identify compounds that target the F508del CFTR structural defect and promote its expression and stability at the plasma membrane, so far their clinical efficacy has proven to be poor, highlighting the necessity to better understand the molecular mechanism of CFTR regulation and of the pathogenesis of the disease. Accumulating evidence suggests that the inclusion of the CFTR in macromolecular complexes and its interaction with the cortical cytoskeleton may play a key role in fine‐tuning the regulation of channel function. Here we review some recent findings that support a critical role for protein–protein interactions involving CFTR and for the cytoskeleton in promoting local control of channel activity. These findings indicate that compounds that rescue and stabilize CFTR at the apical membrane may not be sufficient to restore its function unless the appropriate intracellular milieu is also reconstituted.
eLife | 2017
Stefania Monterisi; Miguel J Lobo; Craig Livie; John Castle; Michael Weinberger; George S. Baillie; Nicoletta C. Surdo; Nshunge Musheshe; Alessandra Stangherlin; Eyal Gottlieb; Rory J Maizels; Mario Bortolozzi; Massimo Micaroni; Manuela Zaccolo
cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death. DOI: http://dx.doi.org/10.7554/eLife.21374.001
Journal of Cell Science | 2016
Anna Claudia Abbattiscianni; Maria Favia; Maria Teresa Mancini; Rosa Angela Cardone; Lorenzo Guerra; Stefania Monterisi; Stefano Castellani; Onofrio Laselva; Francesca Di Sole; Massimo Conese; Manuela Zaccolo; Valeria Casavola
ABSTRACT The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as ‘correctors’ for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion. Highlighted Article: Correctors of F508del CFTR, by activating ezrin and actin cytoskeleton re-organization, generate a sub-cortical pool of cAMP of adequate amplitude to activate chloride secretion.
Methods of Molecular Biology | 2015
Oliver Lomas; Marcella Brescia; Ricardo Carnicer; Stefania Monterisi; Nicoletta C. Surdo; Manuela Zaccolo
Genetically encoded biosensors that make use of fluorescence resonance energy transfer (FRET) are important tools for the study of compartmentalized cyclic nucleotide signaling in living cells. With the advent of germ line and tissue-specific transgenic technologies, the adult mouse represents a useful tool for the study of cardiovascular pathophysiology. The use of FRET-based genetically encoded biosensors coupled with this animal model represents a powerful combination for the study of cAMP signaling in live primary cardiomyocytes. In this chapter, we describe the steps required during the isolation, viral transduction, and culture of cardiomyocytes from an adult mouse to obtain reliable expression of genetically encoded FRET biosensors for the study of cAMP signaling in living cells.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Alex Burdyga; Nicoletta C. Surdo; Stefania Monterisi; Giulietta Di Benedetto; Francesca Grisan; Elisa Penna; Luca Pellegrini; Mario Bortolozzi; Pawel Swietach; Tullio Pozzan; Konstantinos Lefkimmiatis
Significance The selective phosphorylation of spatially distinct PKA targets is key for the pleiotropy of the cAMP cascade. This characteristic of the pathway is currently attributed to the ability of phosphodiesterases or adenylate cyclases to create subcellular sites (microdomains) where the concentration of cAMP is distinct from that of the surrounding areas. The role of phosphatases in this process has not been tested. Here we show that limited access of phosphatases to the PKA targets present at the outer mitochondrial membrane generates distinct microdomains of PKA phosphorylated proteins despite there being no differences in the local cAMP levels. These results describe an alternative mechanism capable of generating functional cAMP/PKA-dependent microdomains and may be extrapolated to the compartmentalization of other kinase-dependent events. Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase–anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.