Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan J. Reshkin is active.

Publication


Featured researches published by Stephan J. Reshkin.


Nature Reviews Cancer | 2005

The role of disturbed pH dynamics and the Na + /H + exchanger in metastasis

Rosa Angela Cardone; Valeria Casavola; Stephan J. Reshkin

Recent research has highlighted the fundamental role of the tumours extracellular metabolic microenvironment in malignant invasion. This microenvironment is acidified primarily by the tumour-cell Na+/H+ exchanger NHE1 and the H+/lactate cotransporter, which are activated in cancer cells. NHE1 also regulates formation of invadopodia — cell structures that mediate tumour cell migration and invasion. How do these alterations of the metabolic microenvironment and cell invasiveness contribute to tumour formation and progression?


The FASEB Journal | 2000

Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes

Stephan J. Reshkin; Antonia Bellizzi; Sandra Caldeira; Ilaria Malanchi; Manuela Poignee; Marianna Alunni-Fabbroni; Valeria Casavola; Massimo Tommasino

In this study we investigate the mechanism of intracellular pH change and its role in malignant transformation using the E7 oncogene of human papillomavirus type 16 (HPV16). Infecting NIH3T3 cells with recombinant retroviruses expressing the HPV16 E7 or a transformation deficient mutant we show that alkalinization is transformation specific. In NIH3T3 cells in which transformation can be turned on and followed by induction of the HPV16 E7 oncogene expression, we demonstrate that cytoplasmic alkalinization is an early event and was driven by stimulation of Na+/H+ exchanger activity via an increase in the affinity of the intracellular NHE‐1 proton regulatory site. Annulment of the E7‐induced cytoplasmic alkalinization by specific inhibition of the NHE‐1, acidification of culture medium, or clamping the pHi to nontransformed levels prevented the development of later transformed phenotypes such as increased growth rate, serum‐independent growth, anchorage‐independent growth, and glycolytic metabolism. These findings were verified in human keratinocytes (HPKIA), the natural host of HPV. Results from both NIH3T3 and HPKIA cells show that alkalinization acts on pathways that are independent of the E2F‐mediated transcriptional activation of cell cycle regulator genes. Moreover, we show that the transformationdependent increase in proliferation is independent of the concomitant stimulation of glycolysis. Finally, treatment of nude mice with the specific inhibitor of NHE‐1, DMA, delayed the development of HPV16‐keratinocyte tumors. Our data confirm that activation of the NHE‐1 and resulting cellular alkalinization is a key mechanism in oncogenic transformation and is necessary for the development and maintenance of the transformed phenotype.—Reshkin, S. J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M., Alunni‐Fabbroni, M., Casavola, V., Tommasino, M. Na+/H+ exchanger‐dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation‐associated phenotypes.


Journal of Biological Chemistry | 2005

Na+/H+ Exchanger Regulatory Factor Isoform 1 Overexpression Modulates Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Expression and Activity in Human Airway 16HBE14o- Cells and Rescues ΔF508 CFTR Functional Expression in Cystic Fibrosis Cells

Lorenzo Guerra; Teresa Fanelli; Maria Favia; Stefania Maria Riccardi; Giovanni Busco; Rosa Angela Cardone; Salvatore Carrabino; Edward J. Weinman; Stephan J. Reshkin; Massimo Conese; Valeria Casavola

There is evidence that cystic fibrosis transmembrane conductance regulator (CFTR) interacting proteins play critical roles in the proper expression and function of CFTR. The Na+/H+ exchanger regulatory factor isoform 1 (NHERF1) was the first identified CFTR-binding protein. Here we further clarify the role of NHERF1 in the regulation of CFTR activity in two human bronchial epithelial cell lines: the normal, 16HBE14o-, and the homozygous ΔF508 CFTR, CFBE41o-. Confocal analysis in polarized cell monolayers demonstrated that NHERF1 distribution was associated with the apical membrane in 16HBE14o- cells while being primarily cytoplasmic in CFBE41o- cells. Transfection of 16HBE14o- monolayers with vectors encoding for wild-type (wt) NHERF1 increased both apical CFTR expression and apical protein kinase A (PKA)-dependent CFTR-mediated chloride efflux, whereas transfection with NHERF1 mutated in the binding groove of the PDZ domains or truncated for the ERM domain inhibited both the apical CFTR expression and the CFTR-dependent chloride efflux. These data led us to hypothesize an important role for NHERF1 in regulating CFTR localization and stability on the apical membrane of 16HBE14o- cell monolayers. Importantly, wt NHERF1 overexpression in confluent ΔF508 CFBE41o- and ΔF508 CFT1-C2 cell monolayers induced both a significant redistribution of CFTR from the cytoplasm to the apical membrane and a PKA-dependent activation of CFTR-dependent chloride secretion.


Recent Patents on Anti-cancer Drug Discovery | 2012

Na+-H+ Exchanger, pH Regulation and Cancer

Stephan J. Reshkin; Rosa Angela Cardone; Salvador Harguindey

Cancer cells and tissues, regardless of their origin and genetic background, have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the intracellular to extracellular pH gradient (ΔpHi to ΔpHe) in cancer cells and tissue as compared to normal tissue. This perturbation in pH dynamics rises very early in carcinogenesis and is one of the most common patho-physiological hallmarks of tumors. Recently, there has been a very large increase in our knowledge of the importance and roles of pHi and pHe in developing and driving a series of tumor hallmarks. This reversed proton gradient is driven by a series of proton export mechanisms that underlie the initiation and progression of the neoplastic process. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). The NHE1 is an integral membrane transport protein involved in regulating pH and in tumor cells is a major contributor to the production and maintenance of their reversed proton gradient. It is activated during oncogene- dependent transformation resulting in cytosolic alkalinization which then drives subsequent hallmark behaviors including growth factor- and substrate-independent growth, and glycolytic metabolism. It is further activated by various growth factors, hormone, the metabolic microenvironment (low serum, acidic pHe and hypoxia) or by ECM receptor activation. This review will present the recent progress in understanding the role the NHE1 in determining tumor progression and invadopodia- guided invasion/metastasis and recent patents for NHE1 inhibitors and novel therapeutic protocols for anti-NHE1 pharmacological approaches. These may represent a real possibility to open up new avenues for wide-spread and efficient treatments against cancer.


Breast Cancer Research | 2004

The Na + -H + exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

Angelo Paradiso; Rosa Angela Cardone; Antonia Bellizzi; A. Bagorda; Lorenzo Guerra; Massimo Tommasino; Valeria Casavola; Stephan J. Reshkin

IntroductionAn increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na+–H+ exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues.MethodsThe present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured.ResultsWe show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization.ConclusionOur findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point.


European Journal of Cell Biology | 2008

Protons extruded by NHE1 : Digestive or glue?

Christian Stock; Rosa Angela Cardone; Giovanni Busco; Hermann Krähling; Albrecht Schwab; Stephan J. Reshkin

Many physiological and pathophysiological processes, such as embryogenesis, immune defense, wound healing, or metastasis, are based on cell migration and invasion. The activity of the ubiquitously expressed NHE1 isoform of the plasma membrane Na(+)/H(+) exchanger is one of the requirements for directed locomotion of migrating cells. The mechanisms by which NHE1 is involved in cell migration are multiple. NHE1 contributes to cell migration by affecting the cell volume, by regulating the intracellular pH and thereby the assembly and activity of cytoskeletal elements, by anchoring the cytoskeleton to the plasma membrane, by the organization of signal transduction and by regulating gene expression. The present review focuses on two additional, extracellular mechanisms by which NHE1 activity contributes to cell migration and invasion. Protons extruded by the NHE1 lead to local, extracellular acidification which, on the one hand, can create pH optima needed for the activity of proteinases at invadopodia/podosomes necessary for extracellular matrix digestion and, on the other hand, facilitates cell/matrix interaction and adhesion at the cell front.


Molecular Biology of the Cell | 2010

Na/H Exchanger Regulatory Factor 1 Overexpression- dependent Increase of Cytoskeleton Organization Is Fundamental in the Rescue of F508del Cystic Fibrosis Transmembrane Conductance Regulator in Human Airway CFBE41o- Cells

Maria Favia; Lorenzo Guerra; Teresa Fanelli; Rosa Angela Cardone; Stefania Monterisi; Francesca Di Sole; Stefano Castellani; Mingmin Chen; Ursula Seidler; Stephan J. Reshkin; Massimo Conese; Valeria Casavola

NHERF1 overexpression increases functional apical expression of F508del CFTR in CFBE41o- cells. Here, we show that this occurs via the formation of the multiprotein complex NHERF1-phosphoezrin-actin, which provides a regulated linkage between F508del CFTR and the actin cytoskeleton resulting in an increased F508del CFTR stability in the membrane.


Journal of Translational Medicine | 2013

Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research.

Salvador Harguindey; Jose Luis Arranz; Julian David Polo Orozco; Cyril Rauch; Stefano Fais; Rosa Angela Cardone; Stephan J. Reshkin

In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.


Journal of Cell Science | 2013

NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia

Lucie Brisson; Virginie Driffort; Lauriane Benoist; Mallorie Poët; Laurent Counillon; Ester Antelmi; Rosa Rubino; Pierre Besson; Fabien Labbal; Stephan Chevalier; Stephan J. Reshkin; Jacques Goré; Sébastien Roger

Summary The degradation of the extracellular matrix by cancer cells represents an essential step in metastatic progression and this is performed by cancer cell structures called invadopodia. NaV1.5 (also known as SCN5A) Na+ channels are overexpressed in breast cancer tumours and are associated with metastatic occurrence. It has been previously shown that NaV1.5 activity enhances breast cancer cell invasiveness through perimembrane acidification and subsequent degradation of the extracellular matrix by cysteine cathepsins. Here, we show that NaV1.5 colocalises with Na+/H+ exchanger type 1 (NHE-1) and caveolin-1 at the sites of matrix remodelling in invadopodia of MDA-MB-231 breast cancer cells. NHE-1, NaV1.5 and caveolin-1 co-immunoprecipitated, which indicates a close association between these proteins. We found that the expression of NaV1.5 was responsible for the allosteric modulation of NHE-1, rendering it more active at the intracellular pH range of 6.4–7; thus, it potentially extrudes more protons into the extracellular space. Furthermore, NaV1.5 expression increased Src kinase activity and the phosphorylation (Y421) of the actin-nucleation-promoting factor cortactin, modified F-actin polymerisation and promoted the acquisition of an invasive morphology in these cells. Taken together, our study suggests that NaV1.5 is a central regulator of invadopodia formation and activity in breast cancer cells.


Biochimica et Biophysica Acta | 2013

The role of proton dynamics in the development and maintenance of multidrug resistance in cancer

Chloë Daniel; Charlotte Bell; Christopher Burton; Salvador Harguindey; Stephan J. Reshkin; Cyril Rauch

With a projected 382.4 per 100,000 people expected to suffer from some form of malignant neoplasm in 2015, improving treatment is an essential focus of cancer research today. Multi-drug resistance (MDR) is the leading cause of chemotherapeutic failure in the treatment of cancer, the term denoting a characteristic of the disease-causing agent to avoid damage by drugs designed to bring about their destruction. MDR is also characterised by a reversal of the pH gradient across cell membranes leading to an acidification of the outer milieu and an alkalinisation of the cytosol that is maintained by the proton pump vacuolar-type ATPase (V-ATPase) and the proton transporters: Na(+)/H(+) exchanger (NHE1), Monocarboxylate Transporters (MCTs), Carbonic anhydrases (CAs) (mainly CA-IX), adenosinetriphosphate synthase, Na(+)/HCO3(-) co-transporter and the Cl(-)/HCO3(-)exchanger. This review aims to give an introduction to MDR. It will begin with an explanation for what MDR actually is and go on to look at the proposed mechanisms by which a state of drug resistance is achieved. The role of proton-pumps in creating an acidic extracellular pH and alkaline cytosol, as well as key biomechanical processes within the cell membrane itself, will be used to explain how drug resistance can be sustained.

Collaboration


Dive into the Stephan J. Reshkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge