Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanie A. Kane is active.

Publication


Featured researches published by Stefanie A. Kane.


Molecular Pain | 2008

HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity

Samer R Eid; Eric D Crown; Eric L. Moore; Hongyu A Liang; Kar-Chan Choong; Shelley Dima; Darrell A. Henze; Stefanie A. Kane; Mark O. Urban

BackgroundSafe and effective treatment for chronic inflammatory and neuropathic pain remains a key unmet medical need for many patients. The recent discovery and description of the transient receptor potential family of receptors including TRPV1 and TRPA1 has provided a number of potential new therapeutic targets for treating chronic pain. Recent reports have suggested that TRPA1 may play an important role in acute formalin and CFA induced pain. The current study was designed to further explore the therapeutic potential of pharmacological TRPA1 antagonism to treat inflammatory and neuropathic pain.ResultsThe in vitro potencies of HC-030031 versus cinnamaldehyde or allyl isothiocyanate (AITC or Mustard oil)-induced TRPA1 activation were 4.9 ± 0.1 and 7.5 ± 0.2 μM respectively (IC50). These findings were similar to the previously reported IC50 of 6.2 μM against AITC activation of TRPA1 [1]. In the rat, oral administration of HC-030031 reduced AITC-induced nocifensive behaviors at a dose of 100 mg/kg. Moreover, oral HC-030031 (100 mg/kg) significantly reversed mechanical hypersensitivity in the more chronic models of Complete Freunds Adjuvant (CFA)-induced inflammatory pain and the spinal nerve ligation model of neuropathic pain.ConclusionUsing oral administration of the selective TRPA1 antagonist HC-030031, our results demonstrated that TRPA1 plays an important role in the mechanisms responsible for mechanical hypersensitivity observed in inflammatory and neuropathic pain models. These findings suggested that TRPA1 antagonism may be a suitable new approach for the development of a potent and selective therapeutic agent to treat both inflammatory and neuropathic pain.


Neuroscience | 2010

Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion

Sajedeh Eftekhari; Christopher A. Salvatore; Amy Calamari; Stefanie A. Kane; János Tajti; Lars Edvinsson

Calcitonin gene related peptide (CGRP) has a key role in migraine and recently CGRP receptor antagonists have demonstrated clinical efficacy in the treatment of migraine. However, it remains unclear where the CGRP receptors are located within the CGRP signaling pathway in the human trigeminal system and hence the potential antagonist sites of action remain unknown. Therefore we designed a study to evaluate the localization of CGRP and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein (RAMP) 1 in the human trigeminal ganglion using immunohistochemistry and compare with that of rat. Antibodies against purified CLR and RAMP1 proteins were produced and characterized for this study. Trigeminal ganglia were obtained at autopsy from adult subjects and sections from rat trigeminal ganglia were used to compare the immunostaining pattern. The number of cells expressing CGRP, CLR and RAMP1, respectively, were counted. In addition, the glial cells of trigeminal ganglion, particularly the satellite glial cell, were studied to understand a possible relation. We observed immunoreactivity for CGRP, CLR and RAMP1, in the human trigeminal ganglion: 49% of the neurons expressed CGRP, 37% CLR and 36% RAMP1. Co-localization of CGRP and the receptor components was rarely found. There were no CGRP immunoreactions in the glial cells; however some of the glial cells displayed CLR and RAMP1 immunoreactivity. Similar results were observed in rat trigeminal ganglia. We report that human and rat trigeminal neurons store CGRP, CLR and RAMP1; however, CGRP and CLR/RAMP1 do not co-localize regularly but are found in separate neurons. Glial cells also contain the CGRP receptor components but not CGRP. Our results indicate, for the first time, the possibility of CGRP signaling in the human trigeminal ganglion involving both neurons and satellite glial cells. This suggests a possible site of action for the novel CGRP receptor antagonists in migraine therapy.


Journal of Pharmacology and Experimental Therapeutics | 2007

Pharmacological Characterization of MK-0974 [N-[(3R,6S)-6-(2,3-Difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a Potent and Orally Active Calcitonin Gene-Related Peptide Receptor Antagonist for the Treatment of Migraine

Christopher A. Salvatore; James C. Hershey; Halea A. Corcoran; John F. Fay; Victor K. Johnston; Eric L. Moore; Scott D. Mosser; Christopher S. Burgey; Daniel V. Paone; Anthony W. Shaw; Samuel Graham; Joseph P. Vacca; Theresa M. Williams; Kenneth S. Koblan; Stefanie A. Kane

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide that plays a key role in the pathophysiology of migraine headache. CGRP levels in the cranial circulation are increased during a migraine attack, and CGRP itself has been shown to trigger migraine-like headache. The correlation between CGRP release and migraine headache points to the potential utility of CGRP receptor antagonists as novel therapeutics in the treatment of migraine. Indeed, clinical proof-of-concept in the acute treatment of migraine was demonstrated with an intravenous formulation of the CGRP receptor antagonist BIBN4096BS (olcegepant). Here we report on the pharmacological characterization of the first orally bioavailable CGRP receptor antagonist in clinical development, MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide]. In vitro, MK-0974 is a potent antagonist of the human (Ki = 0.77 nM) and rhesus (Ki = 1.2 nM) CGRP receptors but displays >1500-fold lower affinity for the canine and rat receptors as determined via 125I-human CGRP competition binding assays. A rhesus pharmacodynamic assay measuring capsaicin-induced changes in forearm dermal blood flow via laser Doppler imaging was utilized to determine the in vivo activity of CGRP receptor antagonism. MK-0974 produced a concentration-dependent inhibition of dermal vasodilation, generated by capsaicin-induced release of endogenous CGRP, with plasma concentrations of 127 and 994 nM required to block 50 and 90% of the blood flow increase, respectively. In conclusion, MK-0974 is a highly potent, selective, and orally bioavailable CGRP receptor antagonist, which may be valuable in the acute treatment of migraine.


Assay and Drug Development Technologies | 2003

High Throughput Ion-Channel Pharmacology: Planar-Array-Based Voltage Clamp

Laszlo Kiss; Victor N. Uebele; Kenneth S. Koblan; Stefanie A. Kane; Brad Neagle; Kirk S. Schroeder

Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.


European Journal of Pharmacology | 2002

Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells.

Lars Edvinsson; Rikard Alm; Duncan Shaw; Ruth Z. Rutledge; Kenneth S. Koblan; Jenny Longmore; Stefanie A. Kane

Several lines of evidence suggest that a calcitonin-gene related peptide (CGRP) receptor antagonist may serve as a novel abortive migraine treatment. Here we present data on a human cell line and isolated human vessels for such an antagonist, BIBN4096BS. On SK-N-MC membranes, radiolabelled CGRP was displaced by both CGRP-(8-37) and BIBN4096BS, yielding pK(i) values of 8.5 and 11.4, respectively. Functional studies with SK-N-MC cells demonstrated that CGRP-induced cAMP production was antagonised by both CGRP-(8-37) and BIBN4096BS with pA(2) values of 7.8 and 11.2, respectively. Isolated human cerebral, coronary, and omental arteries were studied with a sensitive myograph technique. CGRP induced a concentration-dependent relaxation that was antagonized by both CGRP-(8-37) and BIBN4096BS in a competitive manner. CGRP was a weaker agonist on coronary arteries as compared to intracranial arteries; however, BIBN4096BS was an equally effective antagonist. In human omental arteries, CGRP did not induce relaxation. BIBN4096 had a pA(2) value of 10.1 in cerebral and 10.4 in coronary arteries. The results of clinical trials with BIBN4096BS for acute migraine attacks are awaited with great interest.


British Journal of Pharmacology | 2010

Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2

Jerzy Karczewski; Robert H. Spencer; Victor M. Garsky; Annie Liang; Michael Leitl; Matthew J. Cato; Sean P. Cook; Stefanie A. Kane; Mark O. Urban

BACKGROUND AND PURPOSE Inflammatory pain is triggered by activation of pathways leading to the release of mediators such as bradykinin, prostaglandins, interleukins, ATP, growth factors and protons that sensitize peripheral nociceptors. The activation of acid‐sensitive ion channels (ASICs) may have particular relevance in the development and maintenance of inflammatory pain. ASIC3 is of particular interest due to its restricted tissue distribution in the nociceptive primary afferent fibres and its high sensitivity to protons.


European Journal of Pharmacology | 2001

Characterisation of the effects of a non-peptide CGRP receptor antagonist in SK-N-MC cells and isolated human cerebral arteries.

Lars Edvinsson; Anette Sams; Inger Jansen-Olesen; János Tajti; Stefanie A. Kane; Ruth Z. Rutledge; Kenneth S. Koblan; R.G. Hill; Jenny Longmore

The cerebral circulation is innervated by calcitonin gene-related peptide (CGRP) containing fibers originating in the trigeminal ganglion. During a migraine attack, there is a release of CGRP in conjunction with the head pain, and triptan administration abolishes both the CGRP release and the pain at the same time. In the search for a novel treatment of migraine, a non-peptide CGRP antagonist has long been sought. Here, we present data on a human cell line and human and guinea-pig isolated cranial arteries for such an antagonist, Compound 1 (4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid [1-(3,5-dibromo-4-hydroxy-benzyl)-2-oxo-2-(4-phenyl-piperazin-1-yl)-ethyl]-amide). On SK-N-MC cell membranes, radiolabelled CGRP binding was displaced by both CGRP-(8-37) and Compound 1, yielding pK(i) values of 8.9 and 7.8, respectively. Functional studies with SK-N-MC cells showed that CGRP-induced cAMP production was antagonised by both CGRP-(8-37) and Compound 1 with pA(2) values of 7.8 and 7.7, respectively. Isolated human and guinea pig cerebral arteries were studied with a sensitive myograph technique. CGRP induced a concentration-dependent relaxation in human cerebral arteries which was antagonized by both CGRP-(8-37) and Compound 1 in a competitive manner. In guinea pig basilar arteries, CGRP-(8-37) antagonised the CGRP-induced relaxation while Compound 1 had a weak blocking effect. The clinical studies of non-peptide CGRP antagonists are awaited with great interest.


Journal of Pharmacology and Experimental Therapeutics | 2013

In Vivo Quantification of Calcitonin Gene-Related Peptide Receptor Occupancy by Telcagepant in Rhesus Monkey and Human Brain Using the Positron Emission Tomography Tracer [11C]MK-4232

Eric Hostetler; Aniket Joshi; Sandra M. Sanabria-Bohórquez; Hong Fan; Zhizhen Zeng; Mona Purcell; Liza Gantert; Kerry Riffel; Mangay Williams; Stacey O'Malley; Patricia Miller; Harold G. Selnick; Steven N. Gallicchio; Ian M. Bell; Christopher A. Salvatore; Stefanie A. Kane; Chi-Chung Li; Richard Hargreaves; Tjibbe de Groot; Guy Bormans; Anne Van Hecken; Inge Derdelinckx; Jan de Hoon; Tom Reynders; Ruben Declercq; Inge De Lepeleire; W Dexter Kennedy; Rebecca Blanchard; Eugene E. Marcantonio; Cyrille Sur

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [11C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-11C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2′-oxospiro[1,3-dihydroindene-2,3′-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [11C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [11C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [11C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [11C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


Journal of Pharmacology and Experimental Therapeutics | 2010

Pharmacological Properties of MK-3207, a Potent and Orally Active Calcitonin Gene-Related Peptide Receptor Antagonist

Christopher A. Salvatore; Eric L. Moore; Amy Calamari; Jacquelynn J. Cook; Maria S. Michener; Stacey O'Malley; Patricia Miller; Cyrille Sur; David L. Williams; Zhizhen Zeng; Andrew Danziger; Joseph J. Lynch; Christopher P. Regan; John F. Fay; Yui S. Tang; Chi-Chung Li; Nicole T. Pudvah; Rebecca B. White; Ian M. Bell; Steven N. Gallicchio; Samuel Graham; Harold G. Selnick; Joseph P. Vacca; Stefanie A. Kane

Calcitonin gene-related peptide (CGRP) has long been hypothesized to play a key role in migraine pathophysiology, and the advent of small-molecule antagonists has clearly demonstrated a clinical link between blocking the CGRP receptor and migraine efficacy. 2-[(8R)-8-(3,5-Difluorophenyl)-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(2R)-2′-oxo-1,1′,2′,3-tetrahydrospiro[indene-2,3′-pyrrolo[2,3-b]pyridin]-5-yl]acetamide (MK-3207) represents the third CGRP receptor antagonist to display clinical efficacy in migraine trials. Here, we report the pharmacological characterization of MK-3207, a potent and orally bioavailable CGRP receptor antagonist. In vitro, MK-3207 is a potent antagonist of the human and rhesus monkey CGRP receptors (Ki = 0.024 nM). In common with other CGRP receptor antagonists, MK-3207 displays lower affinity for CGRP receptors from other species, including canine and rodent. As a consequence of species selectivity, the in vivo potency was assessed in a rhesus monkey pharmacodynamic assay measuring capsaicin-induced changes in forearm dermal blood flow via laser Doppler imaging. MK-3207 produced a concentration-dependent inhibition of dermal vasodilation, with plasma concentrations of 0.8 and 7 nM required to block 50 and 90% of the blood flow increase, respectively. The tritiated analog [3H]MK-3207 was used to study the binding characteristics on the human CGRP receptor. [3H]MK-3207 displayed reversible and saturable binding (KD = 0.06 nM), and the off-rate was determined to be 0.012 min−1, with a t1/2 value of 59 min. In vitro autoradiography studies on rhesus monkey brain slices identified the highest level of binding in the cerebellum, brainstem, and meninges. Finally, as an index of central nervous system penetrability, the in vivo cerebrospinal fluid/plasma ratio was determined to be 2 to 3% in cisterna magna-ported rhesus monkeys.


Regulatory Peptides | 2005

Investigation of the species selectivity of a nonpeptide CGRP receptor antagonist using a novel pharmacodynamic assay.

James C. Hershey; Halea A. Corcoran; Elizabeth P. Baskin; Christopher A. Salvatore; Scott D. Mosser; Theresa M. Williams; Kenneth S. Koblan; Richard Hargreaves; Stefanie A. Kane

The recent discovery of several nonpeptide CGRP antagonists have led to significant advances in our understanding of CGRP receptor pharmacology. Specifically, these antagonists have demonstrated a clear species selectivity with >100-fold greater affinity for human CGRP receptor compared to receptors from other species, such as rat, rabbit and guinea pig. Therefore, nonhuman primate models are required to accurately assess the in vivo activity of these antagonists. The commonly used model in marmosets involves electrical stimulation of the trigeminal ganglia and is a technically difficult and terminal procedure. In this report, we describe a noninvasive pharmacodynamic model in which topical application of capsaicin is utilized to induce the release of endogenous CGRP and a vasodilatory response which can be measured using laser Doppler imaging. Using the potent and selective CGRP antagonist Compound 3, which is an analog of the well-characterized compound BIBN4096BS, we demonstrated 62% inhibition with 300 microg/kg, i.v., in the rat. When tested in the rhesus monkey, only 30 microg/kg of Compound 3 was needed to produce complete inhibition, suggesting that the rhesus CGRP receptor shares a pharmacological profile similar to marmoset and human receptors. Two separate measurements were obtained in this model to provide an indication of both the acute inhibitory effect as well as the prophylactic effect of the CGRP antagonist. At the doses studied, Compound 3 was equally effective on both the acute and prophylactic inhibition of CGRP-mediated vasodilation in rat and rhesus. In conclusion, this is the first report to describe and validate a noninvasive model in nonhuman primates that allows rapid evaluation of CGRP antagonist activity against endogenous CGRP.

Collaboration


Dive into the Stefanie A. Kane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth S. Koblan

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Scott D. Mosser

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Theresa M. Williams

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Samuel L. Graham

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge