Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanie Holzapfel is active.

Publication


Featured researches published by Stefanie Holzapfel.


International Journal of Cancer | 2015

Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas.

Isabel Spier; Stefanie Holzapfel; Janine Altmüller; Bixiao Zhao; Sukanya Horpaopan; Stefanie Vogt; Sophia Y. Chen; Monika Morak; Susanne Raeder; Katrin Kayser; Dietlinde Stienen; Ronja Adam; Peter Nürnberg; Guido Plotz; Elke Holinski-Feder; Richard P. Lifton; Holger Thiele; Per Hoffmann; Verena Steinke; Stefan Aretz

In a number of families with colorectal adenomatous polyposis or suspected Lynch syndrome/HNPCC, no germline alteration in the APC, MUTYH, or mismatch repair (MMR) genes are found. Missense mutations in the polymerase genes POLE and POLD1 have recently been identified as rare cause of multiple colorectal adenomas and carcinomas, a condition termed polymerase proofreading‐associated polyposis (PPAP). The aim of the present study was to evaluate the clinical relevance and phenotypic spectrum of polymerase germline mutations. Therefore, targeted sequencing of the polymerase genes POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3 and POLE4 was performed in 266 unrelated patients with polyposis or fulfilled Amsterdam criteria. The POLE mutation c.1270C>G;p.Leu424Val was detected in four unrelated patients. The mutation was present in 1.5% (4/266) of all patients, 4% (3/77) of all familial cases and 7% (2/30) of familial polyposis cases. The colorectal phenotype in 14 affected individuals ranged from typical adenomatous polyposis to a HNPCC phenotype, with high intrafamilial variability. Multiple colorectal carcinomas and duodenal adenomas were common, and one case of duodenal carcinoma was reported. Additionally, various extraintestinal lesions were evident. Nine further putative pathogenic variants were identified. The most promising was c.1306C>T;p.Pro436Ser in POLE. In conclusion, a PPAP was identified in a substantial number of polyposis and familial colorectal cancer patients. Screening for polymerase proofreading mutations should therefore be considered, particularly in unexplained familial cases. The present study broadens the phenotypic spectrum of PPAP to duodenal adenomas and carcinomas, and identified novel, potentially pathogenic variants in four polymerase genes.


Cancer Science | 2010

Global histone acetylation levels: Prognostic relevance in patients with renal cell carcinoma

Davit Mosashvilli; Philip Kahl; Claudia Mertens; Stefanie Holzapfel; Sebastian Rogenhofer; Stefan Hauser; Reinhard Büttner; Alexander von Ruecker; Stefan C. Müller; Jörg Ellinger

Epigenetic alterations play an important role in carcinogenesis. Recent studies have suggested that global histone modifications are predictors of cancer recurrence in various tumor entities. Global histone acetylation levels (histone H3 lysine 9 acetylation [H3K9Ac], histone H3 lysine 18 acetylation [H3K18Ac], total histone H3 acetylation [H3Ac] and total histone H4 acetylation [H4Ac]) were determined in patients with renal cell carcinoma (RCC) using immunohistochemistry in a tissue micro array with 193 RCC and 10 oncocytoma specimens. The histone acetylation pattern was not different among the diverse histological subtypes of RCC or oncocytoma samples. The H3Ac levels were inversely correlated with pT‐stage (P = 0.005), distant metastasis (P = 0.036), Fuhrman grading (P = 0.001) and RCC progression (P = 0.029, hazard ratio 0.87). H4Ac deacetylation was correlated with pT‐stage (P = 0.011) and grading (P = 0.029). H3K18Ac levels were an independent predictor of cancer‐progression following surgery for localized RCC in the univariate (P = 0.001, hazard ratio 0.78) and multivariate (P = 0.005, hazard ratio 0.82) analysis. In conclusion, our study supports the concept of global histone modification levels as a universal cancer prognosis marker, and provides evidence for the use of histone deacetylases inhibitors as future drugs in the therapy of RCC. (Cancer Sci 2010; 101: 2664–2669)


Nature Communications | 2014

Germline variants in the SEMA4A gene predispose to familial colorectal cancer type X

Eduard Schulz; Petra Klampfl; Stefanie Holzapfel; Andreas R. Janecke; Peter Ulz; Wilfried Renner; Karl Kashofer; Satoshi Nojima; Anita Leitner; Armin Zebisch; Albert Wölfler; Sybille Hofer; Armin Gerger; Sigurd Lax; Christine Beham-Schmid; Verena Steinke; Ellen Heitzer; Jochen B. Geigl; Christian Windpassinger; Gerald Hoefler; Michael R. Speicher; C. Richard Boland; Atsushi Kumanogoh; Heinz Sill

Familial colorectal cancer type X (FCCTX) is characterized by clinical features of hereditary non-polyposis colorectal cancer with a yet undefined genetic background. Here we identify the SEMA4A p.Val78Met germline mutation in an Austrian kindred with FCCTX, using an integrative genomics strategy. Compared with wild-type protein, SEMA4AV78M demonstrates significantly increased MAPK/Erk and PI3K/Akt signalling as well as cell cycle progression of SEMA4A-deficient HCT-116 colorectal cancer cells. In a cohort of 53 patients with FCCTX, we depict two further SEMA4A mutations, p.Gly484Ala and p.Ser326Phe and the single-nucleotide polymorphism (SNP) p.Pro682Ser. This SNP is highly associated with the FCCTX phenotype exhibiting increased risk for colorectal cancer (OR 6.79, 95% CI 2.63 to 17.52). Our study shows previously unidentified germline variants in SEMA4A predisposing to FCCTX, which has implications for surveillance strategies of patients and their families.


International Journal of Cancer | 2015

Genome-wide CNV analysis in 221 unrelated patients and targeted high-throughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis.

Sukanya Horpaopan; Isabel Spier; Alexander M. Zink; Janine Altmüller; Stefanie Holzapfel; Andreas Laner; Stefanie Vogt; Siegfried Uhlhaas; Stefanie Heilmann; Dietlinde Stienen; Sandra M. Pasternack; Kathleen Keppler; Ronja Adam; Katrin Kayser; Susanne Moebus; Markus Draaken; Franziska Degenhardt; Hartmut Engels; Andrea Hofmann; Markus M. Nöthen; Verena Steinke; Alberto Perez-Bouza; Stefan Herms; Elke Holinski-Feder; Holger Fröhlich; Holger Thiele; Per Hoffmann; Stefan Aretz

To uncover novel causative genes in patients with unexplained adenomatous polyposis, a model disease for colorectal cancer, we performed a genome‐wide analysis of germline copy number variants (CNV) in a large, well characterized APC and MUTYH mutation negative patient cohort followed by a targeted next generation sequencing (NGS) approach. Genomic DNA from 221 unrelated German patients was genotyped on high‐resolution SNP arrays. Putative CNVs were filtered according to stringent criteria, compared with those of 531 population‐based German controls, and validated by qPCR. Candidate genes were prioritized using in silico, expression, and segregation analyses, data mining and enrichment analyses of genes and pathways. In 27% of the 221 unrelated patients, a total of 77 protein coding genes displayed rare, nonrecurrent, germline CNVs. The set included 26 candidates with molecular and cellular functions related to tumorigenesis. Targeted high‐throughput sequencing found truncating point mutations in 12% (10/77) of the prioritized genes. No clear evidence was found for autosomal recessive subtypes. Six patients had potentially causative mutations in more than one of the 26 genes. Combined with data from recent studies of early‐onset colorectal and breast cancer, recurrent potential loss‐of‐function alterations were detected in CNTN6, FOCAD (KIAA1797), HSPH1, KIF26B, MCM3AP, YBEY and in three genes from the ARHGAP family. In the canonical Wnt pathway oncogene CTNNB1 (β‐catenin), two potential gain‐of‐function mutations were found. In conclusion, the present study identified a group of rarely affected genes which are likely to predispose to colorectal adenoma formation and confirmed previously published candidates for tumor predisposition as etiologically relevant.


Gut | 2016

Activating ERBB2/HER2 mutations indicate susceptibility to pan-HER inhibitors in Lynch and Lynch-like colorectal cancer

Michael Kloth; Vanessa Ruesseler; Christoph Engel; Katharina Koenig; Martin Peifer; Erika Mariotti; Helen Kuenstlinger; Alexandra Florin; Ursula Rommerscheidt-Fuss; Ulrike Koitzsch; Claudia Wodtke; Frank Ueckeroth; Stefanie Holzapfel; Stefan Aretz; Peter Propping; Markus Loeffler; Sabine Merkelbach-Bruse; Margarete Odenthal; Nicolaus Friedrichs; Lukas C. Heukamp; Thomas Zander; Reinhard Buettner

Objective Microsatellite instability (MSI) is detected in approximately 15% of all colorectal cancers (CRC) and virtually in all cases with Lynch syndrome. The MSI phenotype is caused by dysfunctional mismatch repair (MMR) and leads to accumulation of DNA replication errors. Sporadic MSI CRC often harbours BRAFV600E; however, no consistent data exist regarding targeted treatment approaches in BRAFwt MSI CRC. Design Mutations and quantitative MSI were analysed by deep sequencing in 196 formalin fixed paraffin embedded (FFPE) specimens comprising Lynch and Lynch-like CRCs from the German Hereditary Nonpolyposis Colorectal Cancer registry. Functional relevance of recurrent ERBB2/HER2 mutations was investigated in CRC cell lines using reversible and irreversible HER-targeting inhibitors, EGFR-directed antibody cetuximab, HER2-directed antibody trastuzumab and siRNA-mediated ERBB2/HER2 knockdown. Results Quantification of nucleotide loss in non-coding mononucleotide repeats distinguished microsatellite status with very high accuracy (area under curve=0.9998) and demonstrated progressive losses with deeper invasion of MMR-deficient colorectal neoplasms (p=0.008). Characterisation of BRAFwt MSI CRC revealed hot-spot mutations in well-known oncogenic drivers, including KRAS (38.7%), PIK3CA (36.5%), and ERBB2 (15.0%). L755S and V842I substitutions in ERBB2 were highly recurrent. Functional analyses in ERBB2-mutated MSI CRC cell lines revealed a differential response to HER-targeting compounds and superiority of irreversible pan-HER inhibitors. Conclusions We developed a high-throughput deep sequencing approach for concomitant MSI and mutational analyses in FFPE specimens. We provided novel insights into clinically relevant alterations in MSI CRC and a rationale for targeting ERBB2/HER2 mutations in Lynch and Lynch-like CRC.


Journal of Medical Genetics | 2016

Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases

Isabel Spier; Dmitriy Drichel; Martin Kerick; Jutta Kirfel; Sukanya Horpaopan; Andreas Laner; Stefanie Holzapfel; Sophia Peters; Ronja Adam; Bixiao Zhao; Tim Becker; Richard P. Lifton; Sven Perner; Per Hoffmann; Glen Kristiansen; Bernd Timmermann; Markus M. Nöthen; Elke Holinski-Feder; Michal R. Schweiger; Stefan Aretz

Background In 30–50% of patients with colorectal adenomatous polyposis, no germline mutation in the known genes APC, causing familial adenomatous polyposis, MUTYH, causing MUTYH-associated polyposis, or POLE or POLD1, causing polymerase-proofreading-associated polyposis can be identified, although a hereditary aetiology is likely. This study aimed to explore the impact of APC mutational mosaicism in unexplained polyposis. Methods To comprehensively screen for somatic low-level APC mosaicism, high-coverage next-generation sequencing of the APC gene was performed using DNA from leucocytes and a total of 53 colorectal tumours from 20 unrelated patients with unexplained sporadic adenomatous polyposis. APC mosaicism was assumed if the same loss-of-function APC mutation was present in ≥2 anatomically separated colorectal adenomas/carcinomas per patient. All mutations were validated using diverse methods. Results In 25% (5/20) of patients, somatic mosaicism of a pathogenic APC mutation was identified as underlying cause of the disease. In 2/5 cases, the mosaic level in leucocyte DNA was slightly below the sensitivity threshold of Sanger sequencing; while in 3/5 cases, the allelic fraction was either very low (0.1–1%) or no mutations were detectable. The majority of mosaic mutations were located outside the somatic mutation cluster region of the gene. Conclusions The present data indicate a high prevalence of pathogenic mosaic APC mutations below the detection thresholds of routine diagnostics in adenomatous polyposis, even if high-coverage sequencing of leucocyte DNA alone is taken into account. This has important implications for both routine work-up and strategies to identify new causative genes in this patient group.


International Journal of Cancer | 2014

Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: A comprehensive analysis of 3,671 families

Verena Steinke; Stefanie Holzapfel; Markus Loeffler; Elke Holinski-Feder; Monika Morak; Hans K. Schackert; Heike Görgens; Christian Pox; Brigitte Royer-Pokora; Magnus von Knebel-Doeberitz; Reinhard Büttner; Peter Propping; Christoph Engel

Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time‐consuming, clinical criteria and tumor‐tissue analysis are widely used as pre‐screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor‐tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability‐high (MSI‐H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI‐H small‐bowel cancer (p < 0.001). No MMR mutations were found among patients under 40‐years‐old with only colorectal adenoma. Familial clustering of Lynch syndrome‐related tumors, early age of onset, and familial occurrence of small‐bowel cancer were clinically relevant predictors for Lynch syndrome.


The Journal of Pathology | 2017

Genomic and transcriptomic heterogeneity of colorectal tumors arising in Lynch Syndrome

Hans Binder; Lydia Hopp; Michal R. Schweiger; Steve Hoffmann; Frank Jühling; Martin Kerick; Bernd Timmermann; Susann Siebert; Christina Grimm; Lilit Nersisyan; Arsen Arakelyan; Maria Herberg; Peter Buske; Henry Loeffler-Wirth; Maciej Rosolowski; Christoph Engel; Jens Przybilla; Martin Peifer; Nicolaus Friedrichs; Gabriela Moeslein; Margarete Odenthal; Michelle Hussong; Sophia Peters; Stefanie Holzapfel; J Nattermann; Robert Hueneburg; Wolff Schmiegel; Brigitte Royer-Pokora; Stefan Aretz; Michael Kloth

Colorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole‐genome and transcriptome studies of LS‐CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS‐CRC and sporadic CRC, about the molecular heterogeneity of LS‐CRC, and about specific mechanisms of LS‐CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour‐distant reference colonic mucosa based on whole‐genome DNA‐sequencing and RNA‐sequencing analyses. Our data support two subgroups of LS‐CRCs, G1 and G2, whereby G1 tumours show a higher number of somatic mutations, a higher amount of microsatellite slippage, and a different mutation spectrum. The gene expression phenotypes support this difference. Reference mucosa of G1 shows a strong immune response associated with the expression of HLA and immune checkpoint genes and the invasion of CD4+ T cells. Such an immune response is not observed in LS tumours, G2 reference and normal (non‐Lynch) mucosa, and sporadic CRC. We hypothesize that G1 tumours are edited for escape from a highly immunogenic microenvironment via loss of HLA presentation and T‐cell exhaustion. In contrast, G2 tumours seem to develop in a less immunogenic microenvironment where tumour‐promoting inflammation parallels tumourigenesis. Larger studies on non‐neoplastic mucosa tissue of mutation carriers are required to better understand the early phases of emerging tumours. Copyright


Carcinogenesis | 2015

Functional testing strategy for coding genetic variants of unclear significance in MLH1 in Lynch syndrome diagnosis

Inga Hinrichsen; Dieter Schäfer; Deborah Langer; Nicole Köger; Margarethe Wittmann; Stefan Aretz; Verena Steinke; Stefanie Holzapfel; Jörg Trojan; Rainer König; Stefan Zeuzem; Angela Brieger; Guido Plotz

Lynch syndrome is caused by inactivating mutations in the MLH1 gene, but genetic variants of unclear significance frequently preclude diagnosis. Functional testing can reveal variant-conferred defects in gene or protein function. Based on functional defect frequencies and clinical applicability of test systems, we developed a functional testing strategy aimed at efficiently detecting pathogenic defects in coding MLH1 variants. In this strategy, tests of repair activity and expression are prioritized over analyses of subcellular protein localization and messenger RNA (mRNA) formation. This strategy was used for four unclear coding MLH1 variants (p.Asp41His, p.Leu507Phe, p.Gln689Arg, p.Glu605del + p.Val716Met). Expression was analyzed using a transfection system, mismatch repair (MMR) activity by complementation in vitro, mRNA formation by reverse transcriptase-PCR in carrier lymphocyte mRNA, and subcellular localization with dye-labeled fusion constructs. All tests included clinically meaningful controls. The strategy enabled efficient identification of defects in two unclear variants: the p.Asp41His variant showed loss of MMR activity, whereas the compound variant p.Glu605del + p.Val716Met had a defect of expression. This expression defect was significantly stronger than the pathogenic expression reference variant analyzed in parallel, therefore the defect of the compound variant is also pathogenic. Interestingly, the expression defect was caused additively by both of the compound variants, at least one of which is non-pathogenic when occurring by itself. Tests were neutral for p.Leu507Phe and p.Gln689Arg, and the results were consistent with available clinical data. We finally discuss the improved sensitivity and efficiency of the applied strategy and its limitations in analyzing unclear coding MLH1 variants.


International Journal of Cancer | 2018

Copy number variation analysis and targeted NGS in 77 families with suspected Lynch syndrome reveals novel potential causative genes: CNV analysis and targeted NGS in suspected Lynch syndrome patients

Katrin Kayser; Franziska Degenhardt; Stefanie Holzapfel; Sukanya Horpaopan; Sophia Peters; Isabel Spier; Monika Morak; Deepak Vangala; Nils Rahner; Magnus von Knebel-Doeberitz; Hans K. Schackert; Christoph Engel; Reinhard Büttner; Juul T. Wijnen; Tobias Doerks; Peer Bork; Susanne Moebus; Stefan Herms; Sascha B. Fischer; Per Hoffmann; Stefan Aretz; Verena Steinke-Lange

In many families with suspected Lynch syndrome (LS), no germline mutation in the causative mismatch repair (MMR) genes is detected during routine diagnostics. To identify novel causative genes for LS, the present study investigated 77 unrelated, mutation‐negative patients with clinically suspected LS and a loss of MSH2 in tumor tissue. An analysis for genomic copy number variants (CNV) was performed, with subsequent next generation sequencing (NGS) of selected candidate genes in a subgroup of the cohort. Genomic DNA was genotyped using Illuminas HumanOmniExpress Bead Array. After quality control and filtering, 25 deletions and 16 duplications encompassing 73 genes were identified in 28 patients. No recurrent CNV was detected, and none of the CNVs affected the regulatory regions of MSH2. A total of 49 candidate genes from genomic regions implicated by the present CNV analysis and 30 known or assumed risk genes for colorectal cancer (CRC) were then sequenced in a subset of 38 patients using a customized NGS gene panel and Sanger sequencing. Single nucleotide variants were identified in 14 candidate genes from the CNV analysis. The most promising of these candidate genes were: (i) PRKCA, PRKDC, and MCM4, as a functional relation to MSH2 is predicted by network analysis, and (ii) CSMD1, as this is commonly mutated in CRC. Furthermore, six patients harbored POLE variants outside the exonuclease domain, suggesting that these might be implicated in hereditary CRC. Analyses in larger cohorts of suspected LS patients recruited via international collaborations are warranted to verify the present findings.

Collaboration


Dive into the Stefanie Holzapfel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans K. Schackert

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge