Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanie Kaiser is active.

Publication


Featured researches published by Stefanie Kaiser.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Commonness and rarity in the marine biosphere

Sean R. Connolly; M. Aaron MacNeil; M. Julian Caley; Nancy Knowlton; Edward Cripps; Mizue Hisano; Loïc M. Thibaut; Bhaskar Deb Bhattacharya; Lisandro Benedetti-Cecchi; Russell E. Brainard; A. Brandt; Fabio Bulleri; Kari E. Ellingsen; Stefanie Kaiser; Ingrid Kröncke; Katrin Linse; Elena Maggi; Timothy D. O’Hara; Laetitia Plaisance; Gary C. B. Poore; Santosh Kumar Sarkar; K. K. Satpathy; Ulrike Schückel; Alan Williams; Robin S. Wilson

Significance Tests of biodiversity theory have been controversial partly because alternative formulations of the same theory seemingly yield different conclusions. This has been a particular challenge for neutral theory, which has dominated tests of biodiversity theory over the last decade. Neutral theory attributes differences in species abundances to chance variation in individuals’ fates, rather than differences in species traits. By identifying common features of different neutral models, we conduct a uniquely robust test of neutral theory across a global dataset of marine assemblages. Consistently, abundances vary more among species than neutral theory predicts, challenging the hypothesis that community dynamics are approximately neutral, and implicating species differences as a key driver of community structure in nature. Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of “neutral” biodiversity models—which assume ecological equivalence of species—to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities’ most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Antarctic Science | 2008

Epibenthic macrofauna associated with the shelf and slope of a young and isolated Southern Ocean island

Stefanie Kaiser; David K. A. Barnes; Katrin Linse; A. Brandt

Abstract The remote South Sandwich arc is an archipelago of small volcanic islands and seamounts entirely surrounded by deep water and about 600 km away from the closest island, South Georgia. As some of the youngest islands (< 5 m.y.) in the Southern Ocean they are ideal for studying colonization processes of the seabed by benthic fauna, but are rarely investigated because of remoteness and extreme weather. The current study attempted to quantify the richness and abundance of the epibenthic macrofauna around the Southern Thule group by taking five epibenthic sledge samples along a depth transect including three shelf (one at 300 m and two at 500 m) and two slope stations (1000 and 1500 m). Our aim was to investigate higher taxon richness and community composition in an isolated Antarctic locality, since recent volcanic eruptions between 1964 and 1997. We examined patterns across all epibenthic macrofauna at phylum and class levels, and investigated trends in some model groups of crustaceans to order and family level. We found that abundance was highest in the shallowest sample and decreased with depth. Shelf samples (300 and 500 m) were dominated by molluscs and malacostracans while at the deeper stations (1000 and 1500 m) nematodes were the most abundant taxon. Surprisingly, the shallow shelf was dominated by animals with restricted dispersal abilities, such as direct developing brooders (malacostracans) or those with lecithotrophic larvae (bivalves of the genus Yoldiella, most bryozoan species). Despite Southern Thules geological youth, recent eruptions, and its remoteness the shallow shelf was rich in higher taxa (phyla/classes) as well as orders and families of our model groups. Future work at higher taxonomic resolution (species level) should greatly increase understanding of how life has reached and established on these young and highly disturbed seabeds.


PLOS ONE | 2017

Biological responses to disturbance from simulated deep-sea polymetallic nodule mining

Daniel O.B. Jones; Stefanie Kaiser; Andrew K. Sweetman; Craig R. Smith; Lenaick Menot; Annemiek Vink; Dwight Trueblood; Jens Greinert; David S.M. Billett; Pedro Martínez Arbizu; Teresa Radziejewska; Ravail Singh; Baban Ingole; Tanja Stratmann; Erik Simon-Lledó; Jennifer M. Durden; Malcolm R. Clark

Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.


PLOS ONE | 2015

A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields

Annika Janssen; Stefanie Kaiser; Karin Meißner; Nils Brenke; Lenaick Menot; Pedro Martínez Arbizu

Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important.


ZooKeys | 2013

Amundsen Sea Mollusca from the BIOPEARL II expedition

Camille Moreau; Katrin Linse; Huw J. Griffiths; David K.A. Barnes; Stefanie Kaiser; Adrian G. Glover; Chester J. Sands; Jan M. Strugnell; Peter Enderlein; Paul Geissler

Abstract Information regarding the molluscs in this dataset is based on the epibenthic sledge (EBS) samples collected during the cruise BIOPEARL II / JR179 RRS James Clark Ross in the austral summer 2008. A total of 35 epibenthic sledge deployments have been performed at five locations in the Amundsen Sea at Pine Island Bay (PIB) and the Amundsen Sea Embayment (ASE) at depths ranging from 476 to 3501m. This presents a unique and important collection for the Antarctic benthic biodiversity assessment as the Amundsen Sea remains one of the least known regions in Antarctica. Indeed the work presented in this dataset is based on the first benthic samples collected with an EBS in the Amundsen Sea. However we assume that the data represented are an underestimation of the real fauna present in the Amundsen Sea. In total 9261 specimens belonging to 6 classes 55 families and 97 morphospecies were collected. The species richness per station varied between 6 and 43. Gastropoda were most species rich 50 species followed by Bivalvia (37), Aplacophora (5), Scaphopoda (3) and one from each of Polyplacophora and Monoplacophora.


Marine Biodiversity | 2017

Editorial: Biodiversity of the Clarion Clipperton Fracture Zone

Stefanie Kaiser; Craig R. Smith; Pedro Martínez Arbizu

Deep-sea areas (>200 m and beyond) support high biodiversity, but also hold economically important reservoirs of mineral deposits, including polymetallic nodules (or manganese nodules), cobalt-rich ferromanganese crusts and polymetallic sulphides, among others. Regions of interest are often located in areas beyond jurisdiction, i.e. in ‘The Area,’ and any activities there related to the exploration and exploitation of nonliving resources are managed by the International Seabed Authority (ISA). For polymetallic nodules, the Clarion Clipperton Fracture Zone (CCZ), in the north-eastern equatorial Pacific, is the area of greatest commercial interest (Fig. 1) (Wedding et al. 2015). The CCZ encompasses about six million square kilometres of abyssal (>3000 m) seafloor, an area nearly the size of Europe, and the region harbours among the world’s most economically valuable deposits of polymetallic nodules (Figs 2 and 3) and is, thus, potentially a major source of copper, nickel, cobalt and other minerals. The CCZ is also of great interest from an ecological point of view. In fact, it displays a spatially very heterogeneous environment characterised by, for example, changes in nodule sizes and densities, large-scale productivity and depth gradients, as well as a high abundance of topographic features, such as seamounts, hills and channels (e.g. Wedding et al. 2013). The variety of habitats has been thought to promote higher diversity of associated benthic communities compared to abyssal areas elsewhere (Ramirez-Llodra et al. 2010; Janssen et al. 2015; Amon et al. 2016b; Vanreusel et al. 2016). Nodules lie on the surface of the soft-sediment seafloor and, therefore, themselves represent important (micro-)habitats for the sessile biota (e.g. xenophyophores, antipatharian corals, sponges), as well as several meiofaunal and microbial taxa found inside the sediment-filled nodule crevices (Fig. 3; Thiel et al. 1993; Veillette et al. 2007; Vanreusel et al. 2016). A recent study by Amon et al. (2016b) suggested that more than half of megafaunal species in the CCZ depend on nodules as a hard substrate. Furthermore, nodule areas seem to contain higher densities of mobile megafauna compared to those lacking nodules (Amon et al. 2016b; Vanreusel et al. 2016). Many species appear have to have very limited geographic ranges consistent with reproduction patterns; alternatively, these species may simply be rare and undersampled (Glover et al. 2002; Janssen et al. 2015;Wilson 2017). In addition, there are quite a few common species, in some cases broadcast spawners, occurring widely across the CCZ (e.g. Glover et al. 2002; Gooday et al. 2015; Wilson 2017). The extraction of deep-sea minerals will alter the structure and functioning of ecosystems targeted for mining. Although biological research on the nodule fauna began in the 1970s (Jones et al. 2017 and citations therein), many fundamental ecological questions (e.g. related to levels of biodiversity, species ranges, connectivity among populations and habitats) remain unanswered, making the impacts of mining difficult to predict. It does seem to be clear, though, that nodules have both significant economic and ecological value (Fritz 2016). In particular, the removal or burial of nodules by mining activities will erase the biota that depend on nodules for habitat, and will also affect the soft-sediment fauna through sediment compression and disruption of near-surface sediment layers * Stefanie Kaiser [email protected]


Zootaxa | 2014

New species of Hebefustis Siebenaller & Hessler 1977 (Isopoda, Asellota, Nannoniscidae) from the Clarion Clipperton Fracture Zone (equatorial NE Pacific)

Stefanie Kaiser

Macrofaunal collections obtained during the French-German BIONOD expedition to the Clarion Clipperton Fracture Zone (CCFZ), equatorial NE Pacific, in spring 2012 yielded two new nannoniscid species, Hebefustis juansenii sp. n. and H. vecino sp. n., which are described in the current paper. The number and position of posterolateral spines of the pleotelson distinguishes the two new species from all other species in the genus. Both species are similar to each other differ, though, in the length of maxilliped epipodite, the presence of a robust spine on pereonite 2 (in H. juansenii sp. n.) as well as the shape of pereonite 4 anterior margin. They also resemble H. primitivus Menzies, 1962 but can be differentiated from the latter by the shape of lateral margins of pereonites 1-4 and the setation and shape of male pleopod 1. A distribution map and a taxonomic key to all known species in the genus are provided, as well as a checklist of known nannoniscid species from the Pacific is presented.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2007

Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean-Results from the ANDEEP I-III expeditions

A. Brandt; Saskia Brix; Wiebke Brökeland; Madhumita Choudhury; Stefanie Kaiser; Marina V. Malyutina


Marine Biology | 2013

Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding

Stefanie Kaiser; Simone N. Brandão; Saskia Brix; David K.A. Barnes; David A. Bowden; Jeroen Ingels; Florian Leese; Stefano Schiaparelli; Claudia P. Arango; Renuka Badhe; Narissa Bax; Magdalena Błażewicz-Paszkowycz; A. Brandt; Nils Brenke; Anna I. Catarino; Bruno David; Chantal De Ridder; Philippe Dubois; Kari E. Ellingsen; Adrian G. Glover; Huw J. Griffiths; Julian Gutt; Kenneth M. Halanych; Charlotte Havermans; Christoph Held; Dorte Janussen; Anne-Nina Lörz; David A. Pearce; Benjamin Pierrat; Torben Riehl


Marine Ecology Progress Series | 2009

Geographic range shift responses to climate change by Antarctic benthos: where we should look

David K. A. Barnes; Huw J. Griffiths; Stefanie Kaiser

Collaboration


Dive into the Stefanie Kaiser's collaboration.

Top Co-Authors

Avatar

A. Brandt

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Brenke

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrin Linse

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar

Craig R. Smith

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Dorte Janussen

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Torben Riehl

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge