Stefanie Kehrer
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefanie Kehrer.
Neuroscience & Biobehavioral Reviews | 2014
Kerstin Irlbacher; Antje Kraft; Stefanie Kehrer; Stephan A. Brandt
Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing.
Psychological Research-psychologische Forschung | 2009
Stefanie Kehrer; Antje Kraft; Kerstin Irlbacher; Stefan Koch; Herbert Hagendorf; Norbert Kathmann; Stephan A. Brandt
Event-related potentials were measured to investigate the role of visual spatial attention mechanisms in conflict processing. We suggested that a more difficult target selection leads to stronger attentional top-down control, thereby reducing the effects of arising conflicts. This hypothesis was tested by varying the selection difficulty in a location negative priming (NP) paradigm. The difficult task resulted in prolonged responses as compared to the easy task. A behavioral NP effect was only evident in the easy task. Psychophysiologically the easy task was associated with reduced parietal N1, enhanced frontocentral N2 and N2pc components and a prolonged P3 latency for the conflict as compared to the control condition. The N2pc effect was also obvious in the difficult task. Additionally frontocentral N2 amplitudes increased and latencies of N2pc and P3 were delayed compared to the easy task. The differences at frontocentral and parietal electrodes are consistent with previous studies ascribing activity in the prefrontal and parietal cortex as the source of top-down attentional control. Thus, we propose that stronger cognitive control is involved in the difficult task, resulting in a reduced behavioral NP conflict.
Journal of Neurology | 2015
Markus Bahnemann; Johanna Hamel; Sophie De Beukelaer; Sven Ohl; Stefanie Kehrer; Heinrich J. Audebert; Antje Kraft; Stephan A. Brandt
Homonymous hemianopia (HH) is a frequent deficit resulting from lesions to post-chiasmal brain structures with a significant negative impact on activities of daily living. To address the question how patients with HH may compensate their visual field defect in a naturalistic environment, we performed a driving simulation experiment and quantitatively analyzed both eye and head movements using a head-mounted pupil camera. 14 patients with HH and 14 matched healthy control subjects participated in the study. Based on the detection performance of dynamically moving obstacles, which appeared unexpectedly along the sides of the road track, we divided the patient group into a high- and a low-performance group. Then, we compared parameters of eye and head movements between the two patient groups and the matched healthy control group to identify those which mediate successful detection of potentially hazardous objects. Differences in detection rates could not be explained by demographic variables or the extent of the visual field defect. Instead, high performance of patients with HH in the naturalistic setting of our driving simulation depended on an adapted visual exploratory behavior characterized by a relative increase in the amplitude and a corresponding increase in the peak velocity of saccades, widening horizontally the distribution of eye movements, and by a shift of the overall distribution of saccades into the blind hemifield. The result of the group comparison analyses was confirmed by a subsequent stepwise regression analysis which identified the horizontal spread of eye movements as single factor predicting the detection of hazardous objects.
European Journal of Neuroscience | 2011
Antje Kraft; Stefanie Kehrer; Herbert Hagendorf; Stephan A. Brandt
Early visual areas (V1, V2, V3/VP, V4v) contain representations of the contralateral hemifield within each hemisphere. Little is known about the role of the visual hemifields along the visuo‐spatial attention processing hierarchy. It is hypothesized that attentional information processing is more efficient across the hemifields (known as bilateral field advantage) and that the integration of information is greater within one hemifield as compared with across the hemifields. Using functional magnetic resonance imaging we examined the effect of distance and hemifield on parallel attentional processing in the early visual areas (V1–V4v) at individually mapped retinotopic locations aligned adjacently or separately within or across the hemifields. We found that the bilateral field advantage in parallel attentional processing over separated attended locations can be assigned, at least partly, to differences in distractor position integration in early visual areas. These results provide evidence for a greater integration of locations between two attended locations within one hemifield than across both hemifields. This nicely correlates with behavioral findings of a bilateral field advantage in parallel attentional processing (when distractors in between cannot be excluded) and a unilateral field advantage if attention has to be shifted across separated locations (when locations in between were integrated).
Cortex | 2015
Antje Kraft; Kerstin Irlbacher; Kathrin Finke; Christian Kaufmann; Stefanie Kehrer; Daniela Liebermann; Claus Bundesen; Stephan A. Brandt
Thalamic nuclei act as sensory, motor and cognitive relays between multiple subcortical areas and the cerebral cortex. They play a crucial role in cognitive functions such as executive functioning, memory and attention. In the acute period after thalamic stroke attentional deficits are common. The precise functional relevance of specific nuclei or vascular sub regions of the thalamus for attentional sub functions is still unclear. The theory of visual attention (TVA) allows the measurement of four independent attentional parameters (visual short term memory storage capacity (VSTM), visual perceptual processing speed, selective control and spatial weighting). We combined parameter-based assessment based on TVA with lesion symptom mapping in standard stereotactic space in sixteen patients (mean age 41.2 ± 11.0 SD, 6 females), with focal thalamic lesions in the medial (N = 9), lateral (N = 5), anterior (N = 1) or posterior (N = 1) vascular territories of the thalamus. Compared with an age-matched control group of 52 subjects (mean age 40.1 ± 6.4, 35 females), the patients with thalamic lesions were, on the group level, mildly impaired in visual processing speed and VSTM. Patients with lateral thalamic lesions showed a deficit in processing speed while all other TVA parameters were within the normal range. Medial thalamic lesions can be associated with a spatial bias and extinction of targets either in the ipsilesional or the contralesional field. A posterior case with a thalamic lesion of the pulvinar replicated a finding of Habekost and Rostrup (2006), demonstrating a spatial bias to the ipsilesional field, as suggested by the neural theory of visual attention (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). A case with an anterior-medial thalamic lesion showed reduced selective attentional control. We conclude that lesions in distinct vascular sub regions of the thalamus are associated with distinct attentional syndromes (medial = spatial bias, lateral = processing speed).
Frontiers in Psychology | 2013
Gamze Strack; Christian Kaufmann; Stefanie Kehrer; Stephan A. Brandt; Birgit Stürmer
With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.
Neuropsychologia | 2015
Stefanie Kehrer; Antje Kraft; Stefan Koch; Norbert Kathmann; Kerstin Irlbacher; Stephan A. Brandt
The posterior parietal cortex (PPC) and the dorsolateral prefrontal cortex (DLPFC) are known to be part of a cortical network involved in visual spatial attention. Top-down control can modulate processing at target and distractor positions over a sequence of trials, leading to positive priming at prior target positions and negative priming at prior distractor positions. In order to elucidate the exact time course of this top-down mechanism we here propose a transcranial magnetic stimulation (TMS) protocol. Single-pulses were applied over the right PPC, the right DLPFC or over the vertex (sham stimulation) at five time intervals (50, 100, 150, 200, 250 ms) after onset of a probe display during a spatial negative priming paradigm. Both suppression of the negative priming effect at a previous distractor position and enhancement of positive priming at a previous target position was found if a TMS pulse was applied 100 ms after the probe display onset either over the right DLPFC or the right PPC. We suggest that top-down mechanisms within the right fronto-parietal attention network are compromised during TMS interference in this time window.
Vision Research | 2010
Antje Kraft; Cathleen Grimsen; Dennis Trenner; Stefanie Kehrer; Anika Lipfert; Martin Köhnlein; Manfred Fahle; Stephan A. Brandt
Perceptual learning is defined as a long-lasting improvement of perception as a result of experience. Here we examined the role of task on fast perceptual learning for shape localisation either in simple detection or based on form discrimination in different visual submodalities, using identical stimulus position and stimulus types for both tasks. Thresholds for each submodality were identified by four-alternative-forced-choice tasks. Fast perceptual learning occurred for shape detection-based on luminance, motion and color differences but not for texture differences. In contradistinction, fast perceptual learning was not evident in shape localisation based on discrimination. Thresholds of all submodalities were stable across days. Fast perceptual learning seems to differ not only between different visual submodalities, but also across different tasks within the same visual submodality.
Clinical Neurophysiology | 2015
Antje Kraft; S. Schmidt; Stefanie Kehrer; Norbert Kathmann; Kerstin Irlbacher; Stephan A. Brandt
Introduction A bilateral field advantage (BFA), that is enhanced visual processing when stimuli are aligned across both visual hemifields, corresponds to a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources for bilateral displays. Several studies have shown that the BFA extends beyond early stages of visual attentional processing. Visual-short-term-memory (VSTM) capacity was higher when stimuli are distributed bilaterally rather than unilaterally and repetitive transcranial magnetic stimulation (rTMS) over the right precuneus diminished the BFA (Kraft et al., 2014). Methods: Here we tested whether the BFA can be modulated by simultaneous anodal and cathodal transcranial direct current stimulation applied either over the left and right occipital cortex (O1/O2) or over the left and right parietal cortex (P3/P4). Twenty healthy subjects were tested using a whole report paradigm based on the Theory of Visual Attention (TVA; Bundesen, 1990). Results and Conclusion: This approach allowed us measuring VSTM capacity and visual processing speed variability in unilateral and bilateral displays. It is discussed how this approach can modulate the inter-hemispheric parietal and occipital balance and whether it can be used in therapeutic settings, e.g. in patients with visual deficits or spatial neglect.
Cortex | 2014
Antje Kraft; Cathleen Grimsen; Stefanie Kehrer; Markus Bahnemann; Karoline Spang; Maren Prass; Kerstin Irlbacher; Martin Köhnlein; Anika Lipfert; Freimuth Brunner; Andreas Kastrup; Manfred Fahle; Stephan A. Brandt