Stefanie Winkler
Helmholtz-Zentrum Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefanie Winkler.
Nature Chemistry | 2013
Georg Heimel; Steffen Duhm; Ingo Salzmann; Alexander Gerlach; A. Strozecka; Jens Niederhausen; Christoph Bürker; Takuya Hosokai; I. Fernández-Torrente; G. Schulze; Stefanie Winkler; Andreas Wilke; Raphael Schlesinger; Johannes Frisch; Benjamin Bröker; A. Vollmer; B. Detlefs; Jens Pflaum; Satoshi Kera; Katharina J. Franke; Nobuo Ueno; J. I. Pascual; Frank Schreiber; Norbert Koch
Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.
Journal of the American Chemical Society | 2011
Tianshi Qin; Wolfgang Wiedemair; Sebastian Nau; Roman Trattnig; Stefan Sax; Stefanie Winkler; A. Vollmer; Norbert Koch; Martin Baumgarten; Emil J. W. List; Klaus Müllen
We present a novel core-shell-surface multifunctional structure for dendrimers using a blue fluorescent pyrene core with triphenylene dendrons and triphenylamine surface groups. We find efficient excitation energy transfer from the triphenylene shell to the pyrene core, substantially enhancing the quantum yield in solution and the solid state (4-fold) compared to dendrimers without a core emitter, while TPA groups facilitate the hole capturing and injection ability in the device applications. With a luminance of up to 1400 cd/m(2), a saturated blue emission CIE(xy) = (0.15, 0.17) and high operational stability, these dendrimers belong to the best reported fluorescence-based blue-emitting organic molecules.
Accounts of Chemical Research | 2016
Ingo Salzmann; Georg Heimel; Martin Oehzelt; Stefanie Winkler; Norbert Koch
Todays information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi-Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.
Nature Communications | 2015
Henry Méndez; Georg Heimel; Stefanie Winkler; Johannes Frisch; Andreas Opitz; Katrein Sauer; Berthold Wegner; Martin Oehzelt; Christian Röthel; Steffen Duhm; Daniel M. Többens; Norbert Koch; Ingo Salzmann
Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems.
Physical Review Letters | 2013
Yong Xu; Oliver T. Hofmann; Raphael Schlesinger; Stefanie Winkler; Johannes Frisch; Jens Niederhausen; A. Vollmer; Sylke Blumstengel; F. Henneberger; Norbert Koch; Patrick Rinke; Matthias Scheffler
We discuss density functional theory calculations of hybrid inorganic-organic systems that explicitly include the global effects of doping (i.e., position of the Fermi level) and the formation of a space-charge layer. For the example of tetrafluoro-tetracyanoquinodimethane on the ZnO(0001[over ¯]) surface we show that the adsorption energy and electron transfer depend strongly on the ZnO doping. The associated work function changes are large, for which the formation of space-charge layers is the main driving force. The prominent doping effects are expected to be quite general for charge-transfer interfaces in hybrid inorganic-organic systems and important for device design.
Advanced Materials | 2013
Sebastian Nau; Niels Schulte; Stefanie Winkler; Johannes Frisch; A. Vollmer; Norbert Koch; Stefan Sax; Emil J. W. List
Highly efficient and stable blue light emission is observed in novel copolymers that are produced from specially designed building blocks. A PEDOT:PSS-induced chemical degradation of the polymer light-emitting diodes (PLEDs) is identified at the interface, and it is found to be accompanied by a shift in the emission color. A method to prevent this highly undesirable interaction is presented.
ACS Applied Materials & Interfaces | 2016
Nandanapalli Koteeswara Reddy; Stefanie Winkler; Norbert Koch; Nicola Pinna
A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h.
Optics Express | 2011
Roman Trattnig; Teresa M. Figueira-Duarte; Dominik Lorbach; Wolfgang Wiedemair; Stefan Sax; Stefanie Winkler; A. Vollmer; Norbert Koch; Marianna Manca; Maria Antonietta Loi; Martin Baumgarten; Emil J. W. List; Klaus Müllen
Thorough analyses of the photo- and devicephysics of poly-7-tert-butyl-1,3-pyrenylene (PPyr) by the means of absorption and photoluminescence emission, time resolved photoluminescence and photoinduced absorption spectroscopy as well as organic light emitting devices (OLEDs) are presented in this contribution. Thereby we find that this novel class of polymers shows deep blue light emission as required for OLEDs and does not exhibit excimer or aggregate emission when processed from solvents with low polarity. Moreover the decay dynamics of the compound is found to be comparable to that of well blue emitting conjugated polymers such as polyfluorene. OLEDs built in an improved device assembly show stable bright blue emission for the PPyr homopolymer and further a considerable efficiency enhancement can be demonstrated using a triphenylamine(TPA)/pyrene copolymer.
Organic Light Emitting Materials and Devices XVII | 2013
Sebastian Nau; Roman Trattnig; Leonid Pevzner; Monika Jäger; Raphael Schlesinger; Marco Vittorio Nardi; Giovanni Ligorio; Christos G. Christodoulou; Niels Schulte; Stefanie Winkler; Johannes Frisch; A. Vollmer; Martin Baumgarten; Stefan Sax; Norbert Koch; Klaus Müllen; Emil J. W. List-Kratochvil
Herein we report on the fabrication and the properties of two highly efficient blue light emitting multilayer polymer light emitting diodes (PLEDs). The first device structure combines a thermally stabilized polymer with a material processed from an orthogonal solvent, allowing for the fabrication of a triple layer structure from solution. The well known poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), which can be stabilized in a bake-out procedure, was used as a hole transporting layer. A novel pyrene – triphenylamine (PPyrTPA) copolymer was used as emissive layer. The stack was finalized by a poly(fluorene) - derivative with polar side-chains, therefore being soluble in a polar solvent which allows for the deposition onto PPyrTPA without redissolving. The resulting PLED showed bright-blue electroluminescence (CIE1931 coordinates x=0.163; y=0.216) with a high efficiency of 1.42 cd/A and a peak luminescence of 16500 cd/m². The second presented device configuration comprises a thermally stabilized indenofluorene – triphenylamine copolymer acting as hole transporter, and an emissive copolymer with building blocks specifically designed for blue light emission, effective charge carrier injection and transport as well as for exciton generation. This multilayer PLED led to deep-blue emission (CIE1931 x=0.144; y=0.129) with a remarkably high device efficiency of 9.7 cd/A. Additionally, atomic force microscopy was carried out to investigate the film morphology of the components of the stack and x-ray photoemission spectroscopy was performed to ensure a full coverage of the materials on top of each other. Ultraviolet photoemission spectroscopy confirmed the desired type-II band level offsets on the individual interfaces.
Physical Review B | 2013
Raphael Schlesinger; Yong Xu; Oliver T. Hofmann; Stefanie Winkler; Johannes Frisch; Jens Niederhausen; A. Vollmer; Sylke Blumstengel; F. Henneberger; Patrick Rinke; Matthias Scheffler; Norbert Koch