Stefano Cacchione
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Cacchione.
FEBS Letters | 1997
Stefano Cacchione; Maria Antonietta Cerone; Maria Savino
The structural aspects of nucleosome assembly on telomeres are largely unknown. We analyzed by competitive reconstitution the affinities for the histone octamer of telomeric sequences from four different eukaryotic groups, Arabidopsis thaliana, mammals, Tetrahymena, and Saccharomyces cerevisiae. All telomeres reconstitute in nucleosomes with lower association constants than average nucleosomal DNA. DNase I digestion analysis suggests a multiple translational positioning and the lack of rotational positioning, probably due to telomeric repeats length (in most cases 6–8 bp), out of phase with the DNA helical repeat on the nucleosome (10.2 bp). These results could partly explain the lack of nucleosomes on lower eukaryote telomeres, and suggest a high in vivo mobility of telomeric nucleosomes.
Genes & Development | 2010
Grazia D. Raffa; Domenico Raimondo; Cristina Sorino; Simona Cugusi; Giovanni Cenci; Stefano Cacchione; Maurizio Gatti; Laura Ciapponi
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.
Biophysical Chemistry | 2000
Ilaria Filesi; Stefano Cacchione; Pasquale De Santis; Luigi Rossetti; Maria Savino
Using a competitive reconstitution assay, we measured the free energy spent in nucleosome formation of eight telomeric DNAs, differing in sequence and/or in length. The obtained values are in satisfactorily good agreement with those derived from a theoretical model that allows the calculation of the free energy of nucleosome formation on the basis of sequence-dependent DNA elasticity, using a statistical thermodynamic approach. Both theoretical and experimental evaluations show that telomeres are characterized by the highest free energies of nucleosome formation among all the DNA sequences so far studied. The free energy of nucleosome formation varies according to the different telomeric sequences and the length of the fragments. Theoretical analysis and experimental mapping by lambda exonuclease show that telomeric nucleosomes occupy multiple positions spaced every telomeric repeat. Sequence-dependent DNA elasticity appears as the main determinant of the stability of telomeric nucleosomes and their multiple translational positioning.
Frontiers in Oncology | 2013
Alessandra Galati; Emanuela Micheli; Stefano Cacchione
The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.
PLOS ONE | 2012
Alessandra Galati; Frédérique Magdinier; Valentina Colasanti; Serge Bauwens; Sébastien Pinte; Ruggero Ricordy; Marie Josèphe Giraud-Panis; Miriam Caroline Pusch; Maria Savino; Stefano Cacchione; Eric Gilson
Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres. By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping. Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.
Nucleic Acids Research | 2010
Sabrina Pisano; Daniela Leoni; Alessandra Galati; Daniela Rhodes; Maria Savino; Stefano Cacchione
Human telomeres consist of thousands of base pairs of double-stranded TTAGGG repeats, organized by histone proteins into tightly spaced nucleosomes. The double-stranded telomeric repeats are also specifically bound by the telomeric proteins hTRF1 and hTRF2, which are essential for telomere length maintenance and for chromosome protection. An unresolved question is what role nucleosomes play in telomere structure and dynamics and how they interact and/or compete with hTRF proteins. Here we show that hTRF1 specifically induces mobility of telomeric nucleosomes. Moreover, Atomic Force Microscopy (AFM) imaging shows that hTRF1 induces compaction of telomeric DNA only in the presence of a nucleosome, suggesting that this compaction occurs through hTRF1–nucleosome interactions. Our findings reveal an unknown property of hTRF1 that has implications for understanding telomere structure and dynamics.
Nucleic Acids Research | 2015
Alessandra Galati; Emanuela Micheli; Claudia Alicata; Tiziano Ingegnere; Alessandro Cicconi; Miriam Caroline Pusch; Marie-Josèphe Giraud-Panis; Eric Gilson; Stefano Cacchione
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.
FEBS Letters | 2004
Rosella Mechelli; Claudio Anselmi; Stefano Cacchione; Pasquale De Santis; Maria Savino
Telomeric chromatin has peculiar features with respect to bulk chromatin, which are not fully clarified to date. Nucleosomal arrays, reconstituted on fragments of human telomeric DNA and on tandemly repeated tetramers of 5S rDNA, have been investigated at single‐molecule level by atomic force microscopy and Monte Carlo simulations. A satisfactory correlation emerges between experimental and theoretical internucleosomal distance distributions. However, in the case of telomeric nucleosomal arrays containing two nucleosomes, we found significant differences. Our results show that sequence features of DNA are significant in the basic chromatin organization, but are not the only determinant.
PLOS Genetics | 2015
Romina Burla; Mariateresa Carcuro; Grazia D. Raffa; Alessandra Galati; Domenico Raimondo; Angela Rizzo; Mattia La Torre; Emanuela Micheli; Laura Ciapponi; Giovanni Cenci; Enrico Cundari; Antonio Musio; Annamaria Biroccio; Stefano Cacchione; Maurizio Gatti; Isabella Saggio
Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.
Biophysical Chemistry | 2010
Emanuela Micheli; Matteo Martufi; Stefano Cacchione; Pasquale De Santis; Maria Savino
hTERT core promoter regulates telomerase transcription in human cells, thus its structural features are of large interest. We have found that the G-rich hTERT core promoter region, corresponding to the major DNase I hypersensitive site in chromatin organization, contains nine putative G-quadruplex forming sequences (PQS) and is unfavorable for nucleosome formation. Here we show that four PQS are effectively able to form stable parallel intramolecular G-quadruplexes, using PAGE and CD spectroscopy analysis. The PQS-region, as a whole, appears to be organized in three self-interacting G-quadruplexes, probably giving rise to a helicoidal superstructure, as shown by CD and polymerase stop assay. POL-HPDI drugs, that we previously found useful in selectively stabilizing telomeric G-quadruplex, are able to stabilize both the single intramolecular G-quadruplex and the PQS-region superstructure. The features of their induced CD spectra suggest that POL-HPDIs bind to single G-quadruplexes and to whole PQS-region superstructure, mainly by end-stacking interactions.