Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Casertano is active.

Publication


Featured researches published by Stefano Casertano.


The Astrophysical Journal | 2004

TYPE Ia SUPERNOVA DISCOVERIES AT Z > 1 FROM THE HUBBLE SPACE TELESCOPE: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION 1

Adam G. Riess; Louis-Gregory Strolger; John L. Tonry; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Peter M. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Txitxo Benı́tez; Zlatan I. Tsvetanov

We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.


The Astrophysical Journal | 2007

New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy*

Adam G. Riess; Louis G. Strolger; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Ben Gold; Peter J. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; John L. Tonry; Ryan J. Foley; Robert P. Kirshner; Mark Dickinson; Emily MacDonald; Daniel J. Eisenstein; Mario Livio; Josh Younger; Chun Xu; Tomas Dahlen; Daniel Stern

We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion yr. These objects, which include 13 spectroscopicallyconfirmedSNeIaat z � 1,werediscoveredduring14epochsofreimagingoftheGOODSfieldsNorthand South over 2 yr with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HSTdiscovered SNe Ia, the full sample of 23 SNe Ia at z � 1 provides the highest redshift sample known. Combining these data with previous SN Ia data sets, we measured Hz ðÞ at discrete, uncorrelated epochs, reducing the uncertainty of Hz >1 ðÞ from 50% to under 20%, strengthening the evidence for a cosmic jerk—the transition from deceleration in the past to acceleration in thepresent. The uniqueleverage of theHSThigh-redshift SNe Ia provides thefirstmeaningful constraint on the dark energy equation-of-state parameter at z � 1. The result remains consistent with a cosmological constant [ wz ðÞ ¼� 1] and rules out rapidly evolving dark energy (dw/dz 31). The defining property of dark energy, its negative pressure, appears to be present at z > 1, in the epoch preceding acceleration, with � 98% confidenceinourprimaryfit.Moreover,thez > 1sample-averagedspectralenergydistributionisconsistentwiththat of thetypicalSNIaoverthelast10Gyr,indicatingthatanyspectralevolutionofthepropertiesof SNeIawithredshift is still below our detection threshold.


The Astrophysical Journal | 2004

The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging

Mauro Giavalisco; Henry C. Ferguson; Anton M. Koekemoer; Mark Dickinson; D. M. Alexander; F. E. Bauer; Jacqueline Bergeron; C. Biagetti; W. N. Brandt; Stefano Casertano; Catherine J. Cesarsky; Eleni T. Chatzichristou; Christopher J. Conselice; S. Cristiani; L. N. da Costa; Tomas Dahlen; Duilia Fernandes de Mello; Peter R. M. Eisenhardt; T. Erben; S. M. Fall; C. D. Fassnacht; Robert A. E. Fosbury; Andrew S. Fruchter; Jonathan P. Gardner; Norman A. Grogin; Richard N. Hook; A. E. Hornschemeier; Rafal Idzi; S. Jogee; Claudia Kretchmer

This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.


Publications of the Astronomical Society of the Pacific | 1995

THE PHOTOMETRIC PERFORMANCE AND CALIBRATION OF WFPC2

Jon A. Holtzman; Christopher J. Burrows; Stefano Casertano; J. Jeff Hester; John T. Trauger; Alan M. Watson; Guy Worthey

We discuss the photometric performance and calibration of the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telesopce (HST). The stability and accuracy of WFPC2 photometric measurements is discussed, with particular attention given to charge transfer efficiency (CTE) effects, contamination effects in the ultraviolet (UV), and flat field accuracy and normalization. Observational data are presented from both WFPC2 observations and ground observations using a system similar to that flown. WFPC2 photometric systems are defined both for the ground and flight systems. Transformations between these systems and the Landolt UBVRI system are presented. These transformations are sensitive to details in the spectra being transformed, and these sensitivities are quantified and discussed. On-orbit observations are used to revise the prelaunch estimates of response curves to best match synthetic photometry results with observations, and the accuracy of the resulting synthetic photometry is discussed. Synthetic photometry is used to determine zeropoints and transformations for all of the fight filters, and also to derive interstellar extinction values for the WFPC2 system. Using stellar interior and atmosphere models, isochrones in the WFPC2 system are calculated and compared with several observations.


The Astrophysical Journal | 2016

A 2.4% Determination of the Local Value of the Hubble Constant

Adam G. Riess; Lucas M. Macri; Samantha L. Hoffmann; D. Scolnic; Stefano Casertano; Alexei V. Filippenko; Brad E. Tucker; M. J. Reid; David O. Jones; Jeffrey M. Silverman; Ryan Chornock; Peter M. Challis; Wenlong Yuan; Peter J. Brown; Ryan J. Foley

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant (H_0) from 3.3% to 2.4%. Improvements come from new, near-infrared observations of Cepheid variables in 11 new hosts of recent SNe~Ia, more than doubling the sample of SNe~Ia having a Cepheid-calibrated distance for a total of 19; these leverage the magnitude-z relation based on 300 SNe~Ia at z<0.15. All 19 hosts and the megamaser system NGC4258 were observed with WFC3, thus nullifying cross-instrument zeropoint errors. Other improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC4258, more Cepheids and a more robust distance to the LMC from late-type DEBs, HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes, and (iv) 2 DEBs in M31. H_0 from each is 72.25+/-2.51, 72.04+/-2.67, 76.18+/-2.37, and 74.50+/-3.27 km/sec/Mpc, respectively. Our best estimate of 73.24+/-1.74 km/sec/Mpc combines the anchors NGC4258, MW, and LMC, and includes systematic errors for a final uncertainty of 2.4%. This value is 3.4 sigma higher than 66.93+/-0.62 km/sec/Mpc predicted by LambdaCDM with 3 neutrinos with mass 0.06 eV and the Planck data, but reduces to 2.1 sigma relative to the prediction of 69.3+/-0.7 km/sec/Mpc with the combination of WMAP+ACT+SPT+BAO, suggesting systematic uncertainties in CMB measurements may play a role in the tension. If we take the conflict between Planck and H_0 at face value, one plausible explanation could involve an additional source of dark radiation in the early Universe in the range of Delta N_eff=0.4-1. We anticipate significant improvements in H_0 from upcoming parallax measurements.


The Astrophysical Journal | 2009

A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER

Adam G. Riess; Lucas M. Macri; Stefano Casertano; Megan L. Sosey; Hubert Lampeitl; Henry C. Ferguson; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Devdeep Sarkar

This is the second of two papers reporting results from a program to determine the Hubble constant to ~5% precision from a refurbished distance ladder based on extensive use of differential measurements. Here we report observations of 240 Cepheid variables obtained with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Camera 2 through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the maser galaxy NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities, thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. In addition, the NICMOS measurements reduce the effects of differential extinction in the host galaxies by a factor of ~5 over past optical data. Combined with a greatly expanded set of 240 SNe Ia at z < 0.1 which define their magnitude-redshift relation, we find H 0 = 74.2 ? 3.6 km s?1 Mpc?1, a 4.8% uncertainty including both statistical and systematic errors. To independently test the maser calibration, we use 10 individual parallax measurements of Galactic Cepheids obtained with the HST fine guidance sensor and find similar results. We show that the factor of 2.2 improvement in the precision of H 0 is a significant aid to the determination of the equation-of-state parameter of dark energy, w = P/(?c 2). Combined with the Wilkinson Microwave Anisotropy Probe five-year measurement of ? M h 2, we find w = ?1.12 ? 0.12 independent of any information from high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-redshift SNe Ia and BAO. The constraints on w(z) now including high-redshift SNe Ia and BAO are consistent with a cosmological constant and are improved by a factor of 3 due to the refinement in H 0 alone. We show that future improvements in the measurement of H 0 are likely and should further contribute to multi-technique studies of dark energy.


Publications of the Astronomical Society of the Pacific | 1995

THE PERFORMANCE AND CALIBRATION OF WFPC2 ON THE HUBBLE SPACE TELESCOPE

Jon A. Holtzman; J. Jeff Hester; Stefano Casertano; John T. Trauger; Alan M. Watson; G. E. Ballester; Christopher J. Burrows; John Clarke; David Crisp; Robin W. Evans; John S. Gallagher; Richard E. Griffiths; John G. Hoessel; L. D. Matthews; Jeremy R. Mould; Paul A. Scowen; Karl R. Stapelfeldt; James A. Westphal

The WFPC2 was installed in the Hubble Space Telescope (HST) in 1993 December. Since then, the instrument has been providing high-quality images. A significant amount of calibration data has been collected to aid in the understanding of the on-orbit performance of the instrument. Generally, the behavior of the camera is similar to its performance during the system-level thermal vacuum test at JPL in 1993 May. Surprises were a significant charge-transfer-efficiency (CTE) problem and a significant growth rate in hot pixels at the original operating temperature of the CCDs (-76 °C). The operating temperature of the WFPC2 CCDs was changed to -88 °C on 1994 April 23, and significant improvements in CTE and hot pixels are seen at this temperature. In this paper we describe the on-orbit performance of the WFPC2. We discuss the optical and thermal history, the instrument throughput and stability, the PSF, the effects of undersampling on photometry, the properties of cosmic rays observed on-orbit, and the geometric distortion in the camera. We present the best techniques for the reduction of WFPC2 data, and describe the construction of calibration products including superbiases, superdarks, and fiat fields.


Science | 1996

Far-Ultraviolet Imaging of Jupiter's Aurora and the Io “Footprint”

John Clarke; G. E. Ballester; John T. Trauger; Robin W. Evans; J. E. P. Connerney; Karl R. Stapelfeldt; David Crisp; Paul D. Feldman; Christopher J. Burrows; Stefano Casertano; John S. Gallagher; Richard E. Griffiths; J. Jeff Hester; John G. Hoessel; Jon A. Holtzman; John E. Krist; Vikki Meadows; Jeremy R. Mould; Paul A. Scowen; Alan M. Watson; James A. Westphal

Far-ultraviolet images of Jupiter from the Hubble Space Telescope Wide Field Planetary Camera 2 reveal polar auroral emissions at 300 kilometer resolution and three times higher sensitivity than previously achieved. Persistent features include a main oval containing most of the emission and magnetically connected to the middle magnetosphere, diffuse and variable emissions poleward of the main oval, and discrete emission from Ios magnetic footprint equatorward of the oval. The auroral emissions are variable, exhibit magnetic conjugacy, and are visible above the planet limb. All emissions approximately co-rotate with Jupiter except the Io “footprint,” which is fixed along Ios magnetic flux tube.


The Astronomical Journal | 2000

WFPC2 Observations of the Hubble Deep Field South

Stefano Casertano; Duilia Fernandes de Mello; Mark Dickinson; Henry C. Ferguson; Andrew S. Fruchter; Rosa A. Gonzalez-Lopezlira; Inge Heyer; Richard N. Hook; Zolt Levay; Ray A. Lucas; Jennifer Mack; Russell B. Makidon; Max Mutchler; T. Ed Smith; Massimo Stiavelli; Michael S. Wiggs; Robert E. Williams

The Hubble Deep Field South (HDF-S) observations targeted a high Galactic latitude field near QSO J2233-606. We present Wide Field Planetary Camera 2 observations of the field in four wide bandpasses centered at roughly 300, 450, 606, and 814 nm. Observations, data reduction procedures, and noise properties of the final images are discussed in detail. A catalog of sources is presented, and the number counts and color distributions of the galaxies are compared with a new catalog of the original Hubble Deep Field (HDF-N) that has been constructed in an identical manner. The two fields are qualitatively similar, with the galaxy number counts for the two fields agreeing to within 20%. The HDF-S has more candidate Lyman break galaxies at z > 2 than the HDF-N. The star formation rate per unit volume computed from the HDF-S, based on the UV luminosity of high-redshift candidates, is a factor of 1.9 higher than from the HDF-N at z ~ 2.7, and a factor of 1.3 higher at z ~ 4.


The Astronomical Journal | 1991

DECLINING ROTATION CURVES - THE END OF A CONSPIRACY

Stefano Casertano; J. H. van Gorkom

New observations of H I rotation curves at the Very Large Array have uncovered two galaxies with rotation curves declining between 1 and 3 optical radii. The velocity decrease is large, more than 50 km s-1 (approximately 25% of the maximum rotation velocity), and is present on both sides of the galaxies; projection effects can be ruled out. We interpret the decrease in rotation velocity as an indication of a large ratio of luminous to dark mass in the luminous regions of these systems. An analysis of the current observations combined with rotation curves from the literature shows a clear correlation between peak circular velocity of a galaxy, its central surface brightness and the slope of the rotation curve in the outer parts. This correlation indicates a weakening of the well-known conspiracy between luminous and dark matter, and may provide evidence in favor of the idea that dark matter is baryonic. Although we do not sample the full morphological Hubble sequence, a strong correlation between slope of the rotation curve and morphological type is found. This result seems to support earlier suggestions that the ratio between the mass in dark and luminous matter might be the critical parameter that controls the Hubble sequence.

Collaboration


Dive into the Stefano Casertano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry C. Ferguson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Adam G. Riess

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Burrows

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Anton M. Koekemoer

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar

J. Jeff Hester

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

John T. Trauger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John G. Hoessel

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge