Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Decesari is active.

Publication


Featured researches published by Stefano Decesari.


Nature | 2004

Biogenically driven organic contribution to marine aerosol.

Colin D. O'Dowd; Maria Cristina Facchini; F. Cavalli; Darius Ceburnis; Mihaela Mircea; Stefano Decesari; S. Fuzzi; Young Jun Yoon; Jean-Philippe Putaud

Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earths albedo and climate. So far, much of the focus on marine aerosol has centred on the production of aerosol from sea-salt and non-sea-salt sulphates. Recent field experiments, however, have shown that known aerosol production processes for inorganic species cannot account for the entire aerosol mass that occurs in submicrometre sizes. Several experimental studies have pointed to the presence of significant concentrations of organic matter in marine aerosol. There is some information available about the composition of organic matter, but the contribution of organic matter to marine aerosol, as a function of aerosol size, as well as its characterization as hydrophilic or hydrophobic, has been lacking. Here we measure the physical and chemical characteristics of submicrometre marine aerosol over the North Atlantic Ocean during plankton blooms progressing from spring through to autumn. We find that during bloom periods, the organic fraction dominates and contributes 63% to the submicrometre aerosol mass (about 45% is water-insoluble and about 18% water-soluble). In winter, when biological activity is at its lowest, the organic fraction decreases to 15%. Our model simulations indicate that organic matter can enhance the cloud droplet concentration by 15% to more than 100% and is therefore an important component of the aerosol–cloud–climate feedback system involving marine biota.


Journal of Geophysical Research | 2000

Characterization of water‐soluble organic compounds in atmospheric aerosol: A new approach

Stefano Decesari; Maria Cristina Facchini; S. Fuzzi; Emilio Tagliavini

A new methodological approach is proposed to characterize aerosol water-soluble organic compounds (WSOC). Real aerosol and fog water samples were subjected to a procedure based on a combination of Chromatographic separations, functional group investigation by proton nuclear magnetic resonance (HNMR), and total organic carbon determination. The complex mixture of aerosol/fog WSOC was separated by a Chromatographic procedure into three main classes of compounds: (1) neutral/basic compounds; (2) mono- and di-carboxylic acids; (3) polyacidic compounds. Characterization by HNMR spectroscopy showed that fraction 1 is mainly composed of polyols or polyethers, fraction 2 is mainly composed of hydroxylated aliphatic acidic compounds, while fraction 3 is composed of highly unsaturated polyacidic compounds of predominantly aliphatic character, with a minor content of hydroxyl- groups. Quantitative data on the three classes of compounds were then derived from total organic carbon analysis, showing that the three separated fractions together account for 77% (in terms of C) of the total WSOC concentration of a fog water sample. Further quantitative information on the functional groups present in the three separated fractions can be obtained from HNMR spectra. This newly proposed approach to aerosol WSOC characterization provides comprehensive and synthetic information on aerosol organic composition which can be helpful for modeling purposes and is also particularly useful when aerosol chemical mass closure is pursued.


Geophysical Research Letters | 2008

Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates

Maria Cristina Facchini; M. Rinaldi; Stefano Decesari; C. Carbone; E. Finessi; Mihaela Mircea; S. Fuzzi; Darius Ceburnis; Robert Flanagan; E. Douglas Nilsson; Gerrit de Leeuw; Manuela Martino; Janina Woeltjen; Colin D. O'Dowd

The chemical properties of sea-spray aerosol particles produced by artificially generated bubbles using oceanic waters were investigated during a phytoplankton bloom in the North Atlantic. Spray pa ...


Atmospheric Environment | 2000

Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition

Maria Cristina Facchini; Stefano Decesari; Mihaela Mircea; S. Fuzzi; G. Loglio

A decrease in surface tension with respect to pure water was observed in wet aerosol and cloud/fog samples. The measured decrease of surface tension is positively correlated with the concentration of total soluble organic compounds in the samples. On the basis of a previously developed methodology to fractionate soluble organic compounds into three different classes (neutral compounds, mono- and dicarboxylic acids and polycarboxylic acids), we investigated the surface-active behaviour of the compounds within each of these classes. Polycarboxylic acids having a molecular structure analogous to that of humic substances (humic-like substances) were found to be the most effective surface-active species within the droplets: three times more effective than mono- and dicarboxylic acids and one order of magnitude more than neutral compounds.


Chemical Reviews | 2015

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

Barbara Nozière; Markus Kaberer; M. Claeys; J. D. Allan; Barbara D'Anna; Stefano Decesari; E. Finessi; Marianne Glasius; Irena Grgić; Jacqueline F. Hamilton; Thorsten Hoffmann; Yoshiteru Iinuma; Mohammed Jaoui; Ariane Kahno; Christopher J. Kampf; Ivan Kourtchev; Willy Maenhaut; Nicholas Marsden; Sanna Saarikoski; Jürgen Schnelle-Kreis; Jason D. Surratt; Sönke Szidat; Rafal Szmigielski; Armin Wisthaler

Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway


Journal of Geophysical Research | 2007

Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season

S. Fuzzi; Stefano Decesari; M. C. Facchini; F. Cavalli; L. Emblico; M. Mircea; Meinrat O. Andreae; Ivonne Trebs; A. Hoffer; Pascal Guyon; Paulo Artaxo; Luciana V. Rizzo; Luciene L. Lara; Theotonio Pauliquevis; Willy Maenhaut; Nico Raes; Xuguang Chi; Olga L. Mayol-Bracero; L. L. Soto-Garcia; M. Claeys; Ivan Kourtchev; Jenny Rissler; Erik Swietlicki; Emilio Tagliavini; Gal Schkolnik; Alla H. Falkovich; Yinon Rudich; Gilberto Fisch; Luciana V. Gatti

The aerosol characterization experiment performed within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) field experiment carried out in Rondonia, Brazil, in the period from September to November 2002 provides a unique data set of size-resolved chemical composition of boundary layer aerosol over the Amazon Basin from the intense biomass-burning period to the onset of the wet season. Three main periods were clearly distinguished on the basis of the PM10 concentration trend during the experiment: (1) dry period, with average PM10 well above 50 mu g m(-3); (2) transition period, during which the 24-hour-averaged PM10 never exceeded 40 mu g m(-3) and never dropped below 10 mg m(-3); (3) and wet period, characterized by 48-hour-averaged concentrations of PM10 below 12 mu g m(-3) and sometimes as low as 2 mu g m(-3). The trend of PM10 reflects that of CO concentration and can be directly linked to the decreasing intensity of the biomass- burning activities from September through November, because of the progressive onset of the wet season. Two prominent aerosol modes, in the submicron and supermicron size ranges, were detected throughout the experiment. Dry period size distributions are dominated by the fine mode, while the fine and coarse modes show almost the same concentrations during the wet period. The supermicron fraction of the aerosol is composed mainly of primary particles of crustal or biological origin, whereas submicron particles are produced in high concentrations only during the biomass-burning periods and are mainly composed of organic material, mostly water-soluble, and similar to 10% of soluble inorganic salts, with sulphate as the major anion. Size-resolved average aerosol chemical compositions are reported for the dry, transition, and wet periods. However, significant variations in the aerosol composition and concentrations were observed within each period, which can be classified into two categories: (1) diurnal oscillations, caused by the diurnal cycle of the boundary layer and the different combustion phase active during day (flaming) or night (smouldering); and (2) day-to-day variations, due to alternating phases of relatively wet and dry conditions. In a second part of the study, three subperiods representative of the conditions occurring in the dry, transition, and wet periods were isolated to follow the evolution of the aerosol chemical composition as a function of changes in rainfall rate and in the strength of the sources of particulate matter. The chemical data set provided by the SMOCC field experiment will be useful to characterize the aerosol hygroscopic properties and the ability of the particles to act as cloud condensation nuclei.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High frequency new particle formation in the Himalayas

H. Venzac; K. Sellegri; P. Laj; P. Villani; Paolo Bonasoni; Angela Marinoni; Paolo Cristofanelli; F. Calzolari; S. Fuzzi; Stefano Decesari; Maria-Cristina Facchini; Elisa Vuillermoz; G. P. Verza

Rising air pollution levels in South Asia will have worldwide environmental consequences. Transport of pollutants from the densely populated regions of India, Pakistan, China, and Nepal to the Himalayas may lead to substantial radiative forcing in South Asia with potential effects on the monsoon circulation and, hence, on regional climate and hydrological cycles, as well as to dramatic impacts on glacier retreat. An improved description of particulate sources is needed to constrain the simulation of future regional climate changes. Here, the first evidence of very frequent new particle formation events occurring up to high altitudes is presented. A 16-month record of aerosol size distribution from the Nepal Climate Observatory at Pyramid (Nepal, 5,079 m above sea level), the highest atmospheric research station, is shown. Aerosol concentrations are driven by intense ultrafine particle events occurring on >35% of the days at the interface between clean tropospheric air and the more polluted air rising from the valleys. During a pilot study, we observed a significant increase of ion cluster concentrations with the onset of new particle formation events. The ion clusters rapidly grew to a 10-nm size within a few hours, confirming, thus, that in situ nucleation takes place up to high altitudes. The initiation of the new particle events coincides with the shift from free tropospheric downslope winds to thermal upslope winds from the valley in the morning hours. The new particle formation events represent a very significant additional source of particles possibly injected into the free troposphere by thermal winds.


Advances in Meteorology | 2010

Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

M. Rinaldi; Stefano Decesari; E. Finessi; L. Giulianelli; C. Carbone; S. Fuzzi; Colin D. O'Dowd; Darius Ceburnis; Maria Cristina Facchini

One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production), comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines) distribution could be successfully characterized by adopting a multitechnique analytical approach.


Tellus B | 2002

The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types

Mihaela Mircea; Maria Cristina Facchini; Stefano Decesari; S. Fuzzi; Robert J. Charlson

Abstract This paper describes the effect of the presence of water-soluble organic compounds (WSOC) in aerosol particles on the aerosol critical supersaturation as defined by the Köhler theory and on cloud condensation nuclei (CCN) number concentration. Taking into account both the soluble mass increase and the surface tension depression due to WSOC, we calculated a substantial decrease of the aerosol critical supersaturation, which results in a large increase in CCN number concentration. CCN supersaturation spectra were computed for three different aerosol types: marine, rural and urban. The increase of CCN number concentration in the presence of WSOC (with respect to the case when only the inorganic aerosol compounds are considered) varies with aerosol type, with an increase up to 13% in the marine case, up to 97% in the rural case, and up to 110% in the urban case, for the supersaturation range typical of atmospheric conditions.


Journal of Geophysical Research | 2011

Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment

Stefano Decesari; E. Finessi; M. Rinaldi; M. Paglione; S. Fuzzi; Euripides G. Stephanou; T. Tziaras; Apostolos Spyros; Darius Ceburnis; Colin D. O'Dowd; M. Dall'Osto; Roy M. Harrison; J. D. Allan; Hugh Coe; M. C. Facchini

[1] The organic chemical composition of atmospheric submicron particles in the marine boundary layer was characterized over the northeast Atlantic Ocean in summer 2006, during the season of phytoplankton blooms, in the frame of the Marine Aerosol Production (MAP) experiment. First measurements of water‐insoluble organic carbon (WIOC) in marine aerosol particles by nuclear magnetic resonance (NMR) spectroscopy showed that it is structurally similar to lipids, resembling the organic fraction of sea spray formed during bubble‐bursting experiments. The composition of the water‐soluble organic carbon (WSOC) fraction was investigated by liquid chromatography – mass spectrometry and by 1D‐ and 2D‐NMR spectroscopy, and showed a less hydrophilic fraction containing traces of fatty acids and rich of alkanoic acids formed by lipid degradation, and a more hydrophilic fraction, containing more functionalized species encompassing short‐chain aliphatic acids and sulfate esters of hydroxyl‐carboxylic acids. The more oxidized fraction of WSOC accounts for the oxidized organic aerosol components, which can form by either gas‐to‐particle conversion or extensive chemical aging of lipid‐containing primary particles, as also suggested by the parallel measurements using online mass spectrometric techniques (presented in a companion paper), showing oxidized organic substances internally mixed with sea salt particles. These measurements are also compared with online measurements using an Aerosol Time‐Of‐Flight Mass Spectrometer (ATOFMS) and Aerodyne Aerosol Mass Spectrometer (AMS). Given the large variability in the chemical composition of marine organic aerosol particles, a multitechnique approach is recommended to reduce method‐dependent categorizations and oversimplifications and to improve the comparability with the results obtained in different oceanic areas.

Collaboration


Dive into the Stefano Decesari's collaboration.

Top Co-Authors

Avatar

S. Fuzzi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. C. Facchini

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Finessi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Paglione

National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Rinaldi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Giulianelli

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paolo Bonasoni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge