Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Rubino is active.

Publication


Featured researches published by Stefano Rubino.


Nature | 2006

Detection of magnetic circular dichroism using a transmission electron microscope

P. Schattschneider; Stefano Rubino; C. Hébert; Ján Rusz; J. Kuneš; P. Novák; E. Carlino; M. Fabrizioli; G. Panaccione; G. Rossi

A material is said to exhibit dichroism if its photon absorption spectrum depends on the polarization of the incident radiation. In the case of X-ray magnetic circular dichroism (XMCD), the absorption cross-section of a ferromagnet or a paramagnet in a magnetic field changes when the helicity of a circularly polarized photon is reversed relative to the magnetization direction. Although similarities between X-ray absorption and electron energy-loss spectroscopy in a transmission electron microscope (TEM) have long been recognized, it has been assumed that extending such equivalence to circular dichroism would require the electron beam in the TEM to be spin-polarized. Recently, it was argued on theoretical grounds that this assumption is probably wrong. Here we report the direct experimental detection of magnetic circular dichroism in a TEM. We compare our measurements of electron energy-loss magnetic chiral dichroism (EMCD) with XMCD spectra obtained from the same specimen that, together with theoretical calculations, show that chiral atomic transitions in a specimen are accessible with inelastic electron scattering under particular scattering conditions. This finding could have important consequences for the study of magnetism on the nanometre and subnanometre scales, as EMCD offers the potential for such spatial resolution down to the nanometre scale while providing depth information—in contrast to X-ray methods, which are mainly surface-sensitive.


Physical Review B | 2007

First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets

Jan Rusz; Stefano Rubino; P. Schattschneider

Recently it was demonstrated [Schattschneider , Nature 441, 486 (2006)], that an analog of the x-ray magnetic circular dichroism experiment can be performed with the transmission electron microscope. The new phenomenon has been named energy-loss magnetic chiral dichroism. In this work we present a detailed ab initio study of the chiral dichroism in the Fe, Co, and Ni transition elements. We discuss the methods used for the simulations together with the validity and accuracy of the treatment, which, in principle, can apply to any given crystalline specimen. The dependence of the dichroic signal on the sample thickness, accuracy of the detector position, and the size of convergence and collection angles are calculated.


Journal of Physics D | 2009

Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene

Erika Widenkvist; D. W. Boukhvalov; Stefano Rubino; Sultan Akhtar; Jun Lu; Ronald A. Quinlan; M. I. Katsnelson; Klaus Leifer; Helena Grennberg; Ulf Jansson

A method to produce suspensions of graphene sheets by combining solution-based bromine intercalation and mild sonochemical exfoliation is presented. Ultrasonic treatment of graphite in water leads ...


Journal of Structural Biology | 2012

A site-specific focused-ion-beam lift-out method for cryo Transmission Electron Microscopy.

Stefano Rubino; Sultan Akhtar; Petter Melin; Andrew Searle; Paul Spellward; Klaus Leifer

The focused-ion-beam (FIB) is the method of choice for site-specific sample preparation for Transmission Electron Microscopy (TEM) in material sciences. A lamella can be physically lifted out from a specific region of a bulk specimen with submicrometer precision and thinned to electron transparency for high-resolution imaging in the TEM. The possibility to use this tool in life sciences applications has been limited by the lack of lift-out capabilities at the cryogenic temperatures often needed for biological samples. Conventional cryo-TEM sample preparation is mostly based on ultramicrotomy, a procedure that is not site-specific and known to produce artifacts. Here we demonstrate how a cooled nanomanipulator and a custom-built transfer station can be used to achieve cryo-preparation of TEM samples with the FIB, enabling high-resolution investigation of frozen-hydrated specimens in the TEM.


Journal of Applied Physics | 2008

Energy loss magnetic chiral dichroism: A new technique for the study of magnetic properties in the electron microscope (invited)

P. Schattschneider; Stefano Rubino; M. Stoeger-Pollach; Cécile Hébert; Jan Rusz; L. Calmels; E. Snoeck

The similarity between x-ray absorption near edge structure and electron energy loss near edge structure is well known. However, “exporting” x-ray magnetic circular dichroism (XMCD) to the transmission electron microscope (TEM) was considered impossible with present technology since electron probes possessing chirality (i.e., spin polarization) cannot be set up with sufficient intensity. But recently magnetically induced chiral electronic transitions were detected in the TEM. In analogy to XMCD we introduced the term EMCD (energy loss magnetic chiral dichroism). The mechanism builds upon the formal equivalence between the mixed dynamic form factor for inelastic electron scattering and the absorption cross section for x-rays. Experiments on the 3d ferromagnets show effects very similar to XMCD. Calculations based on the WIEN2K package are in good agreement with experiments. The recent improvement in signal strength and spatial resolution allows now to study atom specific spin and orbital moments on a scale...


Ultramicroscopy | 2008

Optimal aperture sizes and positions for EMCD experiments

Jo Verbeeck; Cécile Hébert; Stefano Rubino; Pavel Novák; Jan Rusz; Florent Houdellier; Christophe Gatel; P. Schattschneider

The signal-to-noise ratio (SNR) in energy-loss magnetic chiral dichroism (EMCD)--the equivalent of X-ray magnetic circular dichroism (XMCD) in the electron microscope--is optimized with respect to the detector shape, size and position. We show that an important increase in SNR over previous experiments can be obtained when taking much larger detector sizes. We determine the ideal shape of the detector but also show that round apertures are a good compromise if placed in their optimal position. We develop the theory for a simple analytical description of the EMCD experiment and then apply it to dynamical multibeam Bloch wave calculations and to an experimental data set. In all cases it is shown that a significant and welcome improvement of the SNR is possible.


Journal of Materials Research | 2008

Energy-loss magnetic chiral dichroism (EMCD): Magnetic chiral dichroism in the electron microscope

Stefano Rubino; P. Schattschneider; Michael Stöger-Pollach; Cécile Hébert; Jan Rusz; L. Calmels; Bénédicte Warot-Fonrose; Florent Houdellier; Virginie Serin; Pavel Novák

A new technique called energy-loss magnetic chiral dichroism (EMCD) has recently been developed [P. Schattschneider, et al. Nature 441, 486 (2006)] to measure magnetic circular dichroism in the transmission electron microscope (TEM) with a spatial resolution of 10 nm. This novel technique is the TEM counterpart of x-ray magnetic circular dichroism, which is widely used for the characterization of magnetic materials with synchrotron radiation. In this paper we describe several experimental methods that can be used to measure the EMCD signal [P. Schattschneider, et al. Nature 441, 486 (2006); C. Hebert, et al. Ultramicroscopy 108(3), 277 (2008); B. Warot-Fonrose, et al. Ultramicroscopy 108(5), 393 (2008); L. Calmels, et al. Phys. Rev. B 76, 060409 (2007); P. van Aken, et al. Microsc. Microanal. 13(3), 426 (2007)] and give a review of the recent improvements of this new investigation tool. The dependence of the EMCD on several experimental conditions (such as thickness, relative orientation of beam and sample, collection and convergence angle) is investigated in the transition metals iron, cobalt, and nickel. Different scattering geometries are illustrated; their advantages and disadvantages are detailed, together with current limitations. The next realistic perspectives of this technique consist of measuring atomic specific magnetic moments, using suitable spin and orbital sum rules, [L. Calmels, et al. Phys. Rev. B 76, 060409 (2007); J. Rusz, et al. Phys. Rev. B 76, 060408 (2007)] with a resolution down to 2 to 3 nm.


Journal of the Science of Food and Agriculture | 2011

Impact of matrix properties on the survival of freeze-dried bacteria

Per Wessman; Denny Mahlin; Sultan Akhtar; Stefano Rubino; Klaus Leifer; Vadim G. Kessler; Sebastian Håkansson

BACKGROUND Disaccharides are, in general, the first choice as formulation compounds when freeze-drying microorganisms. Although polysaccharides and other biopolymers are considered too large to stabilise and interact with cell components in the same beneficial way as disaccharides, polymers have been reported to support cell survival. In the present study we compare the efficiency of sucrose and the polymers Ficoll, hydroxyethylcellulose, hydroxypropylmethylcellulose and polyvinylalcohol to support the survival of three bacterial strains during freeze drying. The initial osmotic conditions were adjusted to be similar for all formulations. Formulation characterisation was used to interpret the impact that different compound properties had on cell survival. RESULTS Despite differences in molecular size, both sucrose and the sucrose-based polymer Ficoll supported cell survival after freeze drying equally well. All formulations became amorphous upon dehydration. Scanning electron microscopy and X-ray diffraction data showed that the discerned differences in structure of the dry formulations had little impact on the survival rates. The capability of the polymers to support cell survival correlated with the surface activity of the polymers in a similar way for all investigated bacterial strains. CONCLUSION Polymer-based formulations can support cell survival as effectively as disaccharides if formulation properties of importance for maintaining cell viability are identified and controlled.


Ultramicroscopy | 2010

Reciprocal and real space maps for EMCD experiments

Hans Lidbaum; Jan Rusz; Stefano Rubino; Andreas Liebig; Björgvin Hjörvarsson; Peter M. Oppeneer; Olle Eriksson; Klaus Leifer

Electron magnetic chiral dichroism (EMCD) is an emerging tool for quantitative measurements of magnetic properties using the transmission electron microscope (TEM), with the possibility of nanometer resolution. The geometrical conditions, data treatment and electron gun settings are found to influence the EMCD signal. In this article, particular care is taken to obtain a reliable quantitative measurement of the ratio of orbital to spin magnetic moment using energy filtered diffraction patterns. For this purpose, we describe a method for data treatment, normalization and selection of mirror axis. The experimental results are supported by theoretical simulations based on dynamical diffraction and density functional theory. Special settings of the electron gun, so called telefocus mode, enable a higher intensity of the electron beam, as well as a reduction of the influence from artifacts on the signal. Using these settings, we demonstrate the principle of acquiring real space maps of the EMCD signal. This enables advanced characterization of magnetic materials with superior spatial resolution.


Journal of Physical Chemistry B | 2010

Spatial Mapping of Elemental Distributions in Polypyrrole-Cellulose Nanofibers using Energy-Filtered Transmission Electron Microscopy

Stefano Rubino; Aamir Razaq; Leif Nyholm; Maria Strømme; Klaus Leifer; Albert Mihranyan

The energy-filtered transmission electron microscopy (EFTEM) technique has been used to study ion-exchange processes in conductive polymer composite nanofibers. The elemental distributions of carbon, nitrogen, oxygen, chlorine, boron, phosphorus, molybdenum, and sulfur within polypyrrole-cellulose nanofibers, used as potential controlled electrochemical solid phase extraction media, have been studied by EFTEM. The distribution of ions within the polypyrrole-cellulose nanofibers and the penetration depth of ions into the material as a function of the size and charge of the latter were investigated. Further, the spatial distribution of single stranded DNA hexamers inside polypyrrole-cellulose nanofibers was mapped subsequent to the electrochemically controlled extraction of DNA from a borate buffer solution. The results show that the EFTEM mapping technique provides unpreceded possibilities for studies of the distribution of ions inside conductive polymer composites.

Collaboration


Dive into the Stefano Rubino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Schattschneider

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Rusz

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

C. Hébert

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Stöger-Pollach

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge