Stefano Stranges
AREA Science Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Stranges.
Journal of Electron Spectroscopy and Related Phenomena | 1999
Rr Blyth; Renaud Delaunay; M Zitnik; J Krempasky; R Krempaska; J Slezak; Kevin C. Prince; R. Richter; M Vondracek; R Camilloni; L. Avaldi; M. Coreno; Giovanni Stefani; C. Furlani; M. de Simone; Stefano Stranges; M.Y. Adam
Abstract The Gas Phase Photoemission beamline at Elettra has been commissioned with outstanding success. All photoabsorption spectra taken between 90 and 900 eV have shown resolution which is equal to or higher than any published spectra. The monochromator is a variable angle spherical grating instrument (plane mirror and grating between entrance and exit slits), with an undulator as the source. Some of the problems encountered in commissioning and their solutions are discussed. In particular the calibration is complicated by the fact that an infinite number of angle pairs of the mirror and grating exist for a particular photon energy, whereas only one angle pair gives the highest resolution. A second problem is that the resolution is so high that above about 80 eV, it is much smaller than the lifetime broadening of any known absorption resonance, making any determination of resolution difficult. The experimental chambers available for users are described together with some examples of spectra which have been taken.
Journal of Synchrotron Radiation | 1998
Kc Prince; Rr Blyth; Renaud Delaunay; M Zitnik; J Krempasky; J Slezak; R Camilloni; L. Avaldi; M. Coreno; Giovanni Stefani; C. Furlani; M. de Simone; Stefano Stranges
This paper reports the present stage of commissioning of the gas-phase photoemission beamline at Elettra, Trieste. The beamline is designed for atomic and molecular science experiments with high-resolution and high-flux synchrotron radiation. It consists of an undulator source, variable-angle spherical-grating monochromator and two experimental stations. The design value of the energy range is 20 to 800 eV with a specified resolving power of over 10000. The procedure adopted for calibration of this type of monochromator is discussed. At present a resolving power up to 20000 and a range up to 900 eV have been measured. Absorption spectra taken at the argon LII,III-edge and at the nitrogen, oxygen and neon K-edges are as sharp as, or sharper than, any reported in the literature. The instrumental broadening is well below the natural line-width making it difficult to quantify the resolution; this problem is discussed.
Journal of Chemical Physics | 2007
F Evangelista; Vincenzo Carravetta; Giovanni Stefani; Branislav Jansík; Michele Alagia; Stefano Stranges; Alessandro Ruocco
An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-consistent field, density functional theory (DFT), and static-exchange theoretical calculations. In addition, ultraviolet photoelectron spectra (UPS) allowed disentangling several outer molecular orbitals. A detailed study of the two highest occupied orbitals (having a(1u) and b(1g) symmetries) is presented: the high energy resolution available for UPS measurements allowed resolving an extra feature assigned to vibrational stretching in the pyrrole rings. This observation, together with the computed DFT electron density distributions of the outer valence orbitals, suggests that the a(1u) orbital (the highest occupied molecular orbital) is mainly localized on the carbon atoms of pyrrole rings and it is doubly occupied, while the b(1g) orbital, singly occupied, is mainly localized on the Cu atom. Ab initio calculations of XPS and XANES spectra at carbon K edge of CuPc are also presented. The comparison between experiment and theory revealed that, in spite of being formally not equivalent, carbon atoms of the benzene rings experience a similar electronic environment. Carbon K-edge absorption spectra were interpreted in terms of different contributions coming from chemically shifted C 1s orbitals of the nonequivalent carbon atoms on the inner ring of the molecule formed by the sequence of CN bonds and on the benzene rings, respectively, and also in terms of different electronic distributions of the excited lowest unoccupied molecular orbital (LUMO) and LUMO+1. In particular, the degenerate LUMO appears to be mostly localized on the inner pyrrole ring.
Journal of Chemical Physics | 2005
Stefano Stranges; Stefano Turchini; Michele Alagia; G. Alberti; G. Contini; P. Decleva; G. Fronzoni; Mauro Stener; N. Zema; Tommaso Prosperi
The dynamical behavior of circular dichroism for valence photoionization processes in pure enantiomers of randomly oriented methyl-oxirane molecules has been studied by circularly polarized synchrotron radiation. Experimental results of the dichroism coefficient obtained for valence photoionization processes as a function of photon energy have been compared with theoretical values predicted by state-of-the-art ab initio density-functional theory. The circular dichroism measured at low electron kinetic energies was as large as 11%. Trends in the experimental dynamical behavior of the dichroism coefficients D(i)(omega) have been observed. Agreement between experimental and theoretical results permits unambiguous identification of the enantiomer and of the individual orbitals.
Journal of Chemical Physics | 2005
Michele Alagia; Chiara Baldacchini; Maria Grazia Betti; Fabio Bussolotti; Vincenzo Carravetta; Ulf Ekström; Carlo Mariani; Stefano Stranges
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.
Journal of Physics B | 2013
Victor Lyamayev; Y. Ovcharenko; R. Katzy; Michele Devetta; Lukas Bruder; A. C. LaForge; M. Mudrich; Ulrich Person; F. Stienkemeier; Maria Krikunova; T. Möller; P. Piseri; L. Avaldi; M. Coreno; P. O’Keeffe; P. Bolognesi; Michele Alagia; A. Kivimäki; Michele Di Fraia; Nils Benedict Brauer; Marcel Drabbels; T. Mazza; Stefano Stranges; P. Finetti; Cesare Grazioli; Oksana Plekan; R. Richter; Kevin C. Prince; C. Callegari
The low density matter end-station at the new seeded free electron laser FERMI@Elettra is a versatile instrument for the study of atoms, molecules and clusters by means of electron and ion spectroscopies. Beams of atoms, molecules and helium droplets as well as clusters of atoms, molecules and metals can be produced by three different pulsed valves. The atomic and molecular beams may be seeded, and the clusters and droplets may be pure, or doped with other atoms and molecules. The electrons and ions produced by the ionization and fragmentation of the samples by the intense light of FERMI can be analysed by the available spectrometers, to give mass spectra and energy as well as angular distributions of charged particles. The design of the detector allows simultaneous detection of electrons and ions using velocity map imaging and time-of-flight techniques respectively. The instruments have a high energy/mass resolution and large solid-angle collection efficiency. We describe the current status of the apparatus and illustrate the potential for future experiments.
Physical Chemistry Chemical Physics | 2010
Michele Alagia; Pietro Candori; Stefano Falcinelli; M. Lavollée; Fernando Pirani; Robert Richter; Stefano Stranges; Franco Vecchiocattivi
Dissociative double photoionization of CO(2), producing CO(+) and O(+) ions, has been studied in the 36-49 eV energy range using synchrotron radiation and ion-ion coincidence imaging detection. At low energy, the reaction appears to occur by an indirect mechanism through the formation of CO(+) and an autoionizing state of the oxygen atom. In this energy range the reaction leads to an isotropic distribution of products with respect to the polarization vector of the light. When the photon energy increases, the distribution of products becomes anisotropic, with the two ions preferentially emitted along the direction of the light polarization vector. This implies that the molecule photoionizes when oriented parallel to that direction and also that the CO(2)(2+) dication just formed dissociates in a time shorter than its typical rotational period. At low photon energy, the CO(+) and O(+) product ions separate predominantly with a total kinetic energy between 3 and 4 eV. This mechanism becomes gradually less important when the photon energy increases and, at 49 eV, a process where the two products separate with a kinetic energy between 5 and 6 eV is dominant.
Journal of Chemical Physics | 2012
Michele Alagia; C. Callegari; Pietro Candori; Stefano Falcinelli; Fernando Pirani; R. Richter; Stefano Stranges; Franco Vecchiocattivi
The two-body dissociation reactions of the dication, C(2)H(2)(2+), produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C(2)H(+)+H(+) products occurs through a metastable dication with a lifetime of 108±22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at ∼4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH(2)(+)+C(+) occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10(-12) s). The KER distribution of product ions for this reaction, exhibits a maximum at ∼4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH(+)+CH(+), exhibits a KER distribution with a maximum at ∼5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.
Journal of Chemical Physics | 2004
Michele Alagia; Brunetto Giovanni Brunetti; Pietro Candori; Stefano Falcinelli; Marc Moix Teixidor; Fernando Pirani; Robert Richter; Stefano Stranges; Franco Vecchiocattivi
The present study describes the characterization of energy and structure of HBr(2+) in its low-lying electronic states, achieved through an extension of a new empirical method [Chem. Phys. Lett. 379, 139 (2003)] recently introduced to evaluate the interatomic interaction in the HX(2+) (X=F,Cl,Br,I) molecular dications. The method is based on identification of the main components of the interaction and their evaluation through some simple correlation formulas. Potential energy curves, given in a simple, natural, and analytical form, made possible the calculations of some important properties, such as double-photoionization energy thresholds, vibrational spacing, average lifetime, and Franck-Condon factors. The predictions, compared with data available in the literature, are of great interest for the analysis and interpretation of some new experimental results.
Journal of Chemical Physics | 2004
Michele Alagia; Francesco Biondini; Brunetto Giovanni Brunetti; Pietro Candori; Stefano Falcinelli; M. Moix Teixidor; Fernando Pirani; Robert Richter; Stefano Stranges; Franco Vecchiocattivi
The double photoionization of HCl molecules by synchrotron radiation has been studied in the energy range between 30 and 50 eV. The HCl(2+) and Cl(2+) product ions have been detected by a photoelectron-photoion-coincidence technique, while the H(+)+Cl(+) formation, which follows the double ionization of HCl, has been studied by photoelectron-photoion-photoion coincidence. The photon energy threshold for the production of HCl(2+) ions has been found to be 35.4+/-0.6 eV, while for the dissociative channel leading to H(+)+Cl(+), it has been measured a threshold at 36.4+/-0.6 eV and a change in the slope of the cross-section energy dependence at 38.7+/-0.7 eV. The production of H+Cl(2+) occurs with a threshold photon energy of 42.8+/-1.1 eV. These results appear to be in a good agreement with previous data by different experimental techniques and recent theoretical calculations performed by our laboratory.