Steffi Heinrichs
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffi Heinrichs.
BioScience | 2017
Kris Verheyen; Pieter De Frenne; Lander Baeten; Donald M. Waller; Radim Hédl; Michael P. Perring; Haben Blondeel; Jörg Brunet; Markéta Chudomelová; Guillaume Decocq; Emiel De Lombaerde; Leen Depauw; Thomas Dirnböck; Tomasz Durak; Ove Eriksson; Frank S. Gilliam; Thilo Heinken; Steffi Heinrichs; Martin Hermy; Bogdan Jaroszewicz; Michael A Jenkins; Sarah E Johnson; Keith Kirby; Martin Kopecký; Dries Landuyt; Jonathan Lenoir; Daijiang Li; Martin Macek; Sybryn L. Maes; František Máliš
More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
European Journal of Forest Research | 2010
Steffi Heinrichs; Markus Bernhardt-Römermann; Wolfgang Schmidt
The estimation model PhytoCalc allows a non-destructive quantification of dry weight and nutrient pools of understorey plants in forests by using the relationship between species biomass, cover and mean shoot length. The model has been validated with independent samples in several German forest types and can be a useful tool in forest monitoring. However, in open areas within forests (e.g. clearcuts), the current model version underestimates biomass and produces unreliable nutrient pool estimations. Thus, tissue density, as approximated by leaf dry matter content (LDMC), is systematically higher under high light compared to low light conditions. We demonstrate that the ratio of LDMC under clearcut conditions to LDMC under forest conditions can be used to adjust the PhytoCalc model to clearcut conditions. We investigated the LDMC ratio of five exemplary species commonly occurring on clearcuts. Integrating the square of the ratio as a correction factor improved estimates of biomass to more than 70% fit between observations and predictions. Results also suggest this ratio can be used to correct nutrient concentrations modelled in PhytoCalc, which tend to be overestimated in clearcuts. As morphological groups of plant species exhibit significantly different ratios, we advise using group-specific correction factors for clearcut adjustments in the future.
Biodiversity and Conservation | 2015
Steffi Heinrichs; Aníbal Pauchard
High human density and land use intensity often coincide with biodiversity hotspots making peri-urban reserves a keystone for conserving natural remnants in a highly anthropogenic matrix. Particularly, intense propagule pressure by alien plant species can pose a threat to native biodiversity. However, little is known about the factors that determine invasibility and the role of roads and other human disturbances for such small protected areas. Within a peri-urban reserve close to the city of Concepción, south-central Chile, we investigated the influence of different site and landscape characteristics on the richness of native and alien plant species across different habitat (ruderal, road and forest sites) and forest types (native and alien dominated forests). Compared to other protected areas, alien species were frequently found in this reserve indicating the importance of urban areas as source for alien species. Aliens concentrate around disturbed ruderal and road sites, facilitating their spread into the reserve. Natural forest areas are less invaded until now. Within forests alien plant species richness was, however, positively associated to the proximity to disturbed landscapes. Forests dominated by alien tree species within the reserve are not the source for alien species within natural forests, but they negatively affect native species richness by replacing adequate seed sources. In order to prevent a further spread of alien species into peri-urban reserves, large scale anthropogenic disturbances should be minimized, already invaded sites must be monitored and buffer-zones protecting reserves from surrounding land use activities should be established.
Soil Science and Plant Nutrition | 2015
Na Lin; Norbert Bartsch; Steffi Heinrichs; Torsten Vor
Abstract Four gaps of 30 m diameter were cut in a mature European beech (Fagus sylvatica L.) forest in 1989. In two of the gaps and their surrounding areas, dolomite lime (3 t ha−1) was applied. The study was designed to examine the long-term effects of lime application and canopy removal on element input via throughfall and output in seepage water at 80 cm depth in this European beech forest. Throughfall and seepage water were collected in the unlimed gap center, the limed gap center and the undisturbed beech stand in 1991, 1992, 1993, 1996 and 2012. The canopy opening increased the seepage water acidity from 1991 to 1996. The pH values of the seepage water were higher in the limed gaps than in the unlimed gaps during the five study periods. The amount of annual throughfall and of seepage water were higher in the gaps during the study period; in 2012, the annual amounts of seepage water were significantly higher in the gaps than in the closed stand, whereas the input of most elements decreased from 1991 to 2012. The seepage water in the unlimed gaps had higher nitrate nitrogen (NO3-N) concentrations, but lower sulfate sulfur (SO4-S) concentrations than in the limed gaps in 1991, 1992, 1993 and 1996. The amount of leaching NO3-N and SO4-S in 2012 was, however, significantly higher in the limed gaps than in the unlimed gaps, while the input of nitrogen (N) and SO4-S was significantly lower in the limed gaps than in the closed stand. In general, the annual amounts of element input via throughfall were higher in the closed stand than in the gaps. However, the element output through leaching was much higher in the gap centers than in the closed stand. The net losses of aluminum (Al), calcium (Ca), magnesium (Mg) and manganese (Mn) were higher in the unlimed gaps than in the limed gaps and the closed stand in 1991. In 2012, 23 years after liming and canopy opening, the effects of gaps and liming, and the interaction of gap and liming on element leaching, were still significant compared to the untreated stand. Overall, canopy opening reduced N, sulfate, Al, and base cation deposition in the long run. Canopy opening in combination with liming affected the seepage water acidity and the leaching losses of base cations up to 23 years after canopy removal and liming in this European beech forest.
Forest Ecology and Management | 2009
Steffi Heinrichs; Wolfgang Schmidt
Journal of Applied Ecology | 2018
Peter Schall; Martin M. Gossner; Steffi Heinrichs; Markus Fischer; Steffen Boch; Daniel Prati; Kirsten Jung; Vanessa Baumgartner; Stefan Blaser; Stefan Böhm; François Buscot; Rolf Daniel; Kezia Goldmann; Kristin Kaiser; Tiemo Kahl; Markus Lange; Jörg Müller; Jörg Overmann; Swen C. Renner; Ernst-Detlef Schulze; Johannes Sikorski; Marco Tschapka; Manfred Türke; Wolfgang W. Weisser; Bernd Wemheuer; Tesfaye Wubet; Christian Ammer
Biodiversity and Ecology | 2012
Steffi Heinrichs; Wulfard Winterhoff; Wolfgang Schmidt
Plant Ecology | 2015
Steffi Heinrichs; Wolfgang Schmidt
Applied Vegetation Science | 2017
Steffi Heinrichs; Wolfgang Schmidt
Forest Ecology and Management | 2015
Na Lin; Norbert Bartsch; Steffi Heinrichs; Torsten Vor