Steffi Herold
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffi Herold.
Molecular Cell | 2002
Steffi Herold; Michael Wanzel; Vincent Beuger; Carsten Frohme; Dorothee Beul; Tomi Hillukkala; Juhani E. Syväoja; Hans-Peter Saluz; Frank Haenel; Martin Eilers
The Myc oncoprotein represses initiator-dependent transcription through the POZ domain transcription factor Miz-1. We now show that transactivation by Miz-1 is negatively regulated by association with topoisomerase II binding protein (TopBP1); UV irradiation downregulates expression of TopBP1 and releases Miz-1. Miz-1 binds to the p21Cip1 core promoter in vivo and is required for upregulation of p21Cip1 upon UV irradiation. Using both c-myc(-/-) cells and a point mutant of Myc that is deficient in Miz-1 dependent repression, we show that Myc negatively regulates transcription of p21Cip1 upon UV irradiation and facilitates recovery from UV-induced cell cycle arrest through binding to Miz-1. Our data implicate Miz-1 in a pathway that regulates cell proliferation in response to UV irradiation.
Trends in Cell Biology | 2003
Michael Wanzel; Steffi Herold; Martin Eilers
The Myc oncoprotein is a transcription factor that can both activate and repress genes. Transcriptional activation by Myc is well understood, but, by contrast, the mechanisms through which Myc represses transcription have remained elusive. Recent evidence suggests that complex formation by Myc with a zinc-finger transcription factor, Miz-1, plays an important role in mediating repression by Myc. The findings might explain how Myc interferes with cell-cycle arrest in response to TGF-beta, APC and DNA damage.
Nature | 2014
Susanne Walz; Francesca Lorenzin; Jennifer P. Morton; Katrin E. Wiese; Björn von Eyss; Steffi Herold; Lukas Rycak; Hélène Dumay-Odelot; Saadia A. Karim; Marek Bartkuhn; Frederik Roels; Torsten Wüstefeld; Matthias Fischer; Martin Teichmann; Lars Zender; Chia-Lin Wei; Owen J. Sansom; Elmar Wolf; Martin Eilers
In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.
Journal of Cell Biology | 2006
Anneli Gebhardt; Michaela Frye; Steffi Herold; Kristin M. Braun; Birgit Samans; Fiona M. Watt; Hans-Peter Elsässer; Martin Eilers
Myc plays a key role in homeostasis of the skin. We show that Miz1, which mediates Myc repression of gene expression, is expressed in the epidermal basal layer. A large percentage of genes regulated by the Myc–Miz1 complex in keratinocytes encode proteins involved in cell adhesion, and some, including the α6 and β1 integrins, are directly bound by Myc and Miz1 in vivo. Using a Myc mutant deficient in Miz1 binding (MycV394D), we show that Miz1 is required for the effects of Myc on keratinocyte responsiveness to TGF-β. Myc, but not MycV394D, decreases keratinocyte adhesion and spreading. In reconstituted epidermis, Myc induces differentiation and loss of cell polarization in a Miz1-dependent manner. In vivo, overexpression of β1 integrins restores basal layer polarity and prevents Myc-induced premature differentiation. Our data show that regulation of cell adhesion is a major function of the Myc–Miz1 complex and suggest that it may contribute to Myc-induced exit from the epidermal stem cell compartment.
Cell Cycle | 2007
Nikita Popov; Steffi Herold; Maria Llamazares; Christina Schülein; Martin Eilers
The cellular levels of the Myc oncoprotein are critical determinants of cell proliferation, cell growth and apoptosis and are tightly regulated by external growth factors. Levels of Myc oncoprotein also decline in response to intracellular stress signals such as DNA damage. We show here that this decline is in part due to proteasomal degradation and that it is mediated by the Fbw7 ubiquitin ligase. We have shown previously that the ubiquitin-specific protease Usp28, binds to the nucleoplasmic isoform of Fbw7, Fbw7α, and counteracts its function in mammalian cells. Usp28 dissociates from Fbw7α in response to UV irradiation, providing a mechanism how Fbw7-mediated degradation of Myc is enhanced upon DNA damage. Our data extend previous observations that link Myc function to the cellular response to DNA damage.
Nature Reviews Cancer | 2009
Steffi Herold; Barbara Herkert; Martin Eilers
Deregulated expression of MYC contributes to the genesis of multiple human tumours. The encoded protein, MYC, functions through the transcriptional regulation of large numbers of target genes. Recent publications show that MYC is closely involved in DNA replication and the checkpoint processes that monitor progress through the S phase, and suggest that limiting replication stress is a key function of this protein. These findings could have considerable implications for our understanding of how MYC transforms cells and which mechanisms protect normal cells from transformation by activated oncogenes.
Nature Cell Biology | 2005
Michael Wanzel; Daniela Kleine-Kohlbrecher; Steffi Herold; Andreas K. Hock; Katrien Berns; Jongsun Park; Brian Arthur Hemmings; Martin Eilers
The transcription factor Miz1 is required for DNA-damage-induced cell-cycle arrest. We have now identified 14-3-3η as a gene that inhibits Miz1 function through interaction with its DNA binding domain. Binding of 14-3-3η to Miz1 depends on phosphorylation by Akt and regulates the recovery of cells from arrest after DNA damage. Miz1 has two functions in response to DNA damage: first, it is required for upregulation of a large group of genes, a function that is regulated by c-Myc, but not by 14-3-3η; second, Miz1 represses the expression of many genes in response to DNA damage in an Akt- and 14-3-3η-regulated manner.
Cancer Research | 2011
Nunzio Iraci; Daniel Diolaiti; Antonella Papa; Antonio Porro; Emanuele Valli; Samuele Gherardi; Steffi Herold; Martin Eilers; Roberto Bernardoni; Giuliano Della Valle; Giovanni Perini
Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.
The EMBO Journal | 2008
Steffi Herold; Andreas K. Hock; Barbara Herkert; Katrien Berns; Jasper Mullenders; Roderick L. Beijersbergen; René Bernards; Martin Eilers
The Myc‐associated zinc‐finger protein, Miz1, activates transcription of the p21cip1 gene in response to UV irradiation. Miz1 associates with topoisomerase II binding protein1 (TopBP1), an essential activator of the Atr kinase. We show here that Miz1 is required for the recruitment of a fraction of TopBP1 to chromatin, for the protection of TopBP1 from proteasomal degradation and for Atr‐dependent signal transduction. TopBP1 that is not bound to chromatin is degraded by the HectH9 (Mule, ARF‐BP1 and HUWE1) ubiquitin ligase. Myc antagonizes the binding of TopBP1 to Miz1; as a result, expression of Myc leads to dissociation of TopBP1 from chromatin, reduces the amount of total TopBP1 and attenuates Atr‐dependent signal transduction. Our data show that Miz1 and Myc affect the activity of the Atr checkpoint through their effect on TopBP1 chromatin association and stability.
Journal of Cell Biology | 2010
Barbara Herkert; Anne Dwertmann; Steffi Herold; Mona Abed; Jean-Francois Naud; Florian Finkernagel; Gregory S. Harms; Amir Orian; Michael Wanzel; Martin Eilers
Arf assembles a complex containing Miz1, heterochromatin, and histone H3K3 to block expression of genes involved in cell adhesion and signal transduction. The resulting blockade of cell–cell and cell–matrix interactions facilitates elimination of cells carrying oncogenic mutations.