Stella Georgiadou
Loughborough University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stella Georgiadou.
ACS Applied Materials & Interfaces | 2013
Abdallah Laouini; Konstantinos P. Koutroumanis; Catherine Charcosset; Stella Georgiadou; Hatem Fessi; R.G. Holdich; Goran T. Vladisavljevic
A novel membrane contactor method was used to produce size-controlled poly(ethylene glycol)-b-polycaprolactone (PEG-PCL) copolymer micelles composed of diblock copolymers with different average molecular weights, Mn (9200 or 10,400 Da) and hydrophilic fractions, f (0.67 or 0.59). By injecting 570 L m(-2) h(-1) of the organic phase (a 1 mg mL(-1) solution of PEG-PCL in tetrahydrofuran) through a microengineered nickel membrane with a hexagonal pore array and 200 μm pore spacing into deionized water agitated at 700 rpm, the micelle size linearly increased from 92 nm for a 5-μm pore size to 165 nm for a 40-μm pore size. The micelle size was finely tuned by the agitation rate, transmembrane flux and aqueous to organic phase ratio. An encapsulation efficiency of 89% and a drug loading of ~75% (w/w) were achieved when a hydrophobic drug (vitamin E) was entrapped within the micelles, as determined by ultracentrifugation method. The drug-loaded micelles had a mean size of 146 ± 7 nm, a polydispersity index of 0.09 ± 0.01, and a ζ potential of -19.5 ± 0.2 mV. When drug-loaded micelles where stored for 50 h, a pH sensitive drug release was achieved and a maximum amount of vitamin E (23%) was released at the pH of 1.9. When a pH-sensitive hydrazone bond was incorporated between PEG and PCL blocks, no significant change in micelle size was observed at the same micellization conditions.
International Journal of Pharmaceutics | 2013
Konstantinos P. Koutroumanis; R.G. Holdich; Stella Georgiadou
A diblock copolymer constituting of a poly(ethylene glycol) (PEG) and a polycaprolactone (PCL) segment, linked with a pH-sensitive hydrazone bond (Hyd), was synthesized. Micelles formed from this copolymer, offer the advantage of encapsulating hydrophobic drugs without the need for conjugation sites. All synthesized polymers were characterized using gel permeation chromatography, infrared and proton nuclear spectroscopies. PEG-Hyd-PCL micelles were prepared using the solvent-displacement method and α-tocopherol was used as a model drug due to its high hydrophobicity. The micelle size and drug loading efficiency were studied with regards to the hydrophilic ratio, f, molecular weight, and the polymer/drug ratio. Dynamic light scattering and transmission electron microscopy showed that the PEG-Hyd-PCL micelles had sizes ranging from 50 to 200 nm. Aqueous micellar dispersions exhibited significantly higher values of turbidity in mildy acidic pH than in neutral, indicating pH-sensitivity for the PEG-Hyd-PCL micelles. The zeta potential of the micellar solutions decreased and the molecular weight distribution became bimodal at mildly acidic pH also supporting the pH sensitive properties of the copolymer. The critical micelle concentration was calculated using fluorescence spectroscopy.
Plastics Rubber and Composites | 2008
Stella Georgiadou; Noreen L. Thomas; Marianne Gilbert; Brian W. Brooks
Abstract Polymer composites, filled with ultra fine particulate fillers, are alternatives to the conventional filled polymers. The reinforcement of the mechanical properties occurs to a greater extent when ultra fine particulate fillers are used in comparison with the conventional microdimensional fillers. To achieve all the benefits that the ultra fine fillers can provide, optimal dispersion as primary particles is essential. To achieve better dispersion of the inorganic particles in a polymer matrix, the ultra fine particles (UFP) are added to the polymerisation reactor so that they are dispersed in the monomer before polymerisation. Hence, the monomer is polymerised in the presence of the UFP (in situ). In this paper the effects of the UFP on the initial monomer dispersion are examined. The presence of the inorganic UFP in the polymerisation reactor influences the properties of the monomer phase and affects the drop size distribution. This in turn influences the grain sizes as well as their distribution, which influence the processability of the resin.
Membranes | 2016
Yu Lu; Danial Chowdhury; Goran T. Vladisavljevic; Konstantinos P. Koutroumanis; Stella Georgiadou
Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF) or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.
Polymers | 2017
Panagiota Moutsatsou; Karen Coopman; Stella Georgiadou
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS) defect free nanofibres of different ratios (1:3; 3:5 and 1:1) were produced with the electrospinning method. They were characterized as for their morphology, hydrophilicity and electrical conductivity. The membranes were then evaluated for their cellular biocompatibility in terms of cell attachment, morphology and cell proliferation. The effect of the PANI content on the membrane properties is discussed. Increase in PANI content resulted in membranes with higher hydrophobicity and higher electrical conductivity. It was found that none of the membranes showed any toxic effects on osteoblasts and fibroblasts, and that they all supported cell attachment and growth, even to a greater extent than tissue culture plastic. The membrane with the PANI/CS ratio 1:3 supports better cell attachment and proliferation for both cell lines due to a synergistic effect of hydrophilicity retention due to the high chitosan content and the conductivity that PANI introduced to the membrane.
ACS Applied Materials & Interfaces | 2016
Konstantinos Alexandros G. Katsogiannis; Goran T. Vladisavljevic; Stella Georgiadou; Ramin Rahmani
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Youngs modulus, Poissons ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
Archive | 2016
Panagiota Moutsatsou; Stella Georgiadou
I recent years, special attention has been given to the benefits of polymer nanocomposite technology to improve the inherent properties of biodegradable polymers. These materials are called “bionanocomposites”, and they provide a fascinating interdisciplinary research field that combines materials science, nanotechnology and biological science. The composites based on biodegradable polymers and different nanofillers with varying functionalities can lead to bionanocomposites with applications ranging from environmentally friendly packaging to automotive uses. Along with many interesting nanofillers, inorganic Transition Metal Dichalcogenide Materials (TMDCs), such as tungsten and Molybdenum Disulfides (WS2 and MoS2), are of interest to the scientific community because of their unique layered structure and functional properties, with nano-sized particles tending to exhibit a different set of properties compared to the bulk forms. TMDCs nanostructures can be zero-dimensional (0-D) (nanoparticles), one-dimensional (1-D) (nanotubes) or two-dimensional (2-D) (nanosheets). In particular, the use of environmentally friendly and biocompatible Inorganic Fullerene-like nanoparticles (IF-WS2) and nanotubes (INT-WS2) have been shown to offer design, processing, performance and cost advantages when compared to carbon nanotubes, nanoclays or other inorganic nanoparticles, for manufacturing advanced polymer nanocomposites. Incorporating of INT-WS2 into biopolymer can modify the crystallization behavior. The present research continues work in this field and focuses on the use of well-dispersed INT-WS2 for enhancing the processability and crystallization behaviour of poly(hydroxybutyrate-cohydroxyvalerate) (PHBV) (Figure 1). In particular, the effects of different INT-WS2 loadings on the isothermal and non-isothermal crystallization behavior of PHBV were studied in detail, using neat PHBV for comparisons.
Polymer | 2014
Raffaella Casasola; Noreen L. Thomas; Anna Trybala; Stella Georgiadou
European Polymer Journal | 2015
Konstantinos Alexandros G. Katsogiannis; Goran T. Vladisavljevic; Stella Georgiadou
Journal of Polymer Science Part B | 2016
Raffaella Casasola; Noreen L. Thomas; Stella Georgiadou