Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Clemens is active.

Publication


Featured researches published by Stephan Clemens.


Planta | 2001

Molecular mechanisms of plant metal tolerance and homeostasis

Stephan Clemens

Abstract. Transition metals such as copper are essential for many physiological processes yet can be toxic at elevated levels. Other metals (e.g. lead) are nonessential and potentially highly toxic. Plants – like all other organisms – possess homeostatic mechanisms to maintain the correct concentrations of essential metal ions in different cellular compartments and to minimize the damage from exposure to nonessential metal ions. A regulated network of metal transport, chelation, trafficking and sequestration activities functions to provide the uptake, distribution and detoxification of metal ions. Some of the components of this network have now been identified: a number of uptake transporters have been cloned as well as candidate transporters for the vacuolar sequestration of metals. Chelators and chaperones are known, and evidence for intracellular metal trafficking is emerging. This recent progress in the molecular understanding of plant metal homeostasis and tolerance is reviewed.


Trends in Plant Science | 2002

A long way ahead: understanding and engineering plant metal accumulation

Stephan Clemens; Michael G. Palmgren; Ute Krämer

Some plants can hyperaccumulate metal ions that are toxic to virtually all other organisms at low dosages. This trait could be used to clean up metal-contaminated soils. Moreover, the accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. Complex interactions of transport and chelating activities control the rates of metal uptake and storage. In recent years, several key steps have been identified at the molecular level, enabling us to initiate transgenic approaches to engineer the transition metal content of plants.


The EMBO Journal | 1999

Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast

Stephan Clemens; Eugene J. Kim; Dieter Neumann; Julian I. Schroeder

Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of ∼55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS‐expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS‐induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.


Trends in Plant Science | 2008

Zinc biofortification of cereals: problems and solutions

Michael G. Palmgren; Stephan Clemens; Lorraine E. Williams; Ute Krämer; Søren Borg; Jan K. Schjørring; Dale Sanders

The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and--in cereals--the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals.


Trends in Plant Science | 2013

Plant science: the key to preventing slow cadmium poisoning

Stephan Clemens; Mark G. M. Aarts; Sébastien Thomine; Nathalie Verbruggen

Practically all human populations are environmentally exposed to cadmium (Cd), mostly through plant-derived food. A growing body of epidemiological evidence suggests that there is no margin of safety between current Cd exposure levels and the threshold for adverse health effects and, hence, there is an urgent need to lower human Cd intake. Here we review recent studies on rice (Oryza sativa) and Cd-hyperaccumulating plants that have led to important insights into the processes controlling the passage of Cd from the soil to edible plant organs. The emerging molecular understanding of Cd uptake, root retention, root-to-shoot translocation and grain loading will enable the development of low Cd-accumulating crops.


Journal of Molecular Biology | 2003

Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier

Zora Markovic-Housley; Massimo Degano; Doriano Lamba; Edda von Roepenack-Lahaye; Stephan Clemens; Markus Susani; Fatima Ferreira; Otto Scheiner; Heimo Breiteneder

Bet v 1l is a naturally occurring hypoallergenic isoform of the major birch pollen allergen Bet v 1. The Bet v 1 protein belongs to the ubiquitous family of pathogenesis-related plant proteins (PR-10), which are produced in defense-response to various pathogens. Although the allergenic properties of PR-10 proteins have been extensively studied, their biological function in plants is not known. The crystal structure of Bet v 1l in complex with deoxycholate has been determined to a resolution of 1.9A using the method of molecular replacement. The structure reveals a large hydrophobic Y-shaped cavity that spans the protein and is partly occupied by two deoxycholate molecules which are bound in tandem and only partially exposed to solvent. This finding indicates that the hydrophobic cavity may have a role in facilitating the transfer of apolar ligands. The structural similarity of deoxycholate and brassinosteroids (BRs) ubiquitous plant steroid hormones, prompted the mass spectrometry (MS) study in order to examine whether BRs can bind to Bet v 1l. The MS analysis of a mixture of Bet v 1l and BRs revealed a specific non-covalent interaction of Bet v 1l with brassinolide and 24-epicastasterone. Together, our findings are consistent with a general plant-steroid carrier function for Bet v 1 and related PR-10 proteins. The role of BRs transport in PR-10 proteins may be of crucial importance in the plant defense response to pathological situations as well as in growth and development.


Plant Physiology | 2004

Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry

Edda von Roepenack-Lahaye; Thomas Degenkolb; Michael Zerjeski; Mathias Franz; Udo Roth; Ludger A. Wessjohann; Jürgen Schmidt; Dierk Scheel; Stephan Clemens

Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2,000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.


Plant Physiology | 2008

Phytochelatin Synthesis Is Essential for the Detoxification of Excess Zinc and Contributes Significantly to the Accumulation of Zinc

Pierre Tennstedt; Daniel Peisker; Christoph Böttcher; Aleksandra Trampczynska; Stephan Clemens

The synthesis of phytochelatins (PCs) is essential for the detoxification of nonessential metals and metalloids such as cadmium and arsenic in plants and a variety of other organisms. To our knowledge, no direct evidence for a role of PCs in essential metal homeostasis has been reported to date. Prompted by observations in Schizosaccharomyces pombe and Saccharomyces cerevisiae indicating a contribution of PC synthase expression to Zn2+ sequestration, we investigated a known PC-deficient Arabidopsis (Arabidopsis thaliana) mutant, cad1-3, and a newly isolated second strong allele, cad1-6, with respect to zinc (Zn) homeostasis. We found that in a medium with low cation content PC-deficient mutants show pronounced Zn2+ hypersensitivity. This phenotype is of comparable strength to the well-documented Cd2+ hypersensitivity of cad1 mutants. PC deficiency also results in significant reduction in root Zn accumulation. To be able to sensitively measure PC accumulation, we established an assay using capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry of derivatized extracts. Plants grown under control conditions consistently showed PC2 accumulation. Analysis of plants treated with same-effect concentrations revealed that Zn2+-elicited PC2 accumulation in roots reached about 30% of the level of Cd2+-elicited PC2 accumulation. We conclude from these data that PC formation is essential for Zn2+ tolerance and provides driving force for the accumulation of Zn. This function might also help explain the mysterious occurrence of PC synthase genes throughout the plant kingdom and in a wide range of other organisms.


The Plant Cell | 2012

Elevated Nicotianamine Levels in Arabidopsis halleri Roots Play a Key Role in Zinc Hyperaccumulation

Ulrich Deinlein; Michael Weber; Holger Schmidt; Stefan Rensch; Aleksandra Trampczynska; Thomas H. Hansen; Søren Husted; Jan K. Schjoerring; Ina N. Talke; Ute Krämer; Stephan Clemens

The hyperaccumulation of micronutrients and toxic metals (such as zinc and cadmium, respectively) represents an extreme trait of metallophytes adapted to metal-rich environments. This work demonstrates that elevated production of the metal chelator nicotianamine, specifically in roots of the metallophyte Arabidopsis halleri, is important for efficient root-to-shoot translocation of zinc. Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.


New Phytologist | 2009

Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter.

Ya-Fen Lin; Hong-Ming Liang; Shu-Yi Yang; Annegret Boch; Stephan Clemens; Chyi-Chuann Chen; Jing-Fen Wu; Jing-Ling Huang; Kuo-Chen Yeh

ZIP transporters (ZRT, IRT-like proteins) are involved in the transport of iron (Fe), zinc (Zn) and other divalent metal cations. The expression of IRT3, a ZIP transporter, is higher in the Zn/cadmium (Cd) hyperaccumulator Arabidopsis halleri than is that of its ortholog in Arabidopsis thaliana, which implies a positive association of its expression with Zn accumulation in A. halleri. IRT3 genes from both A. halleri and A. thaliana functionally complemented the Zn uptake mutant Spzrt1 in Schizosaccharomyces pombe; and Zn uptake double mutant zrt1zrt2, Fe-uptake mutant fet3fet4 and conferred Zn and Fe uptake activity in Saccharomyces cerevisiae. By contrast, the manganese (Mn) uptake mutant smf1 phenotypes were not rescued. Insufficient Cd uptake for toxicity was found. Expression of IRT3-green fluorescent protein (GFP) fusion proteins in Arabidopsis root protoplasts indicated localization of both IRT3 proteins in the plasma membrane. Overexpressing AtIRT3 in A. thaliana led to increased accumulation of Zn in the shoot and Fe in the root of transgenic lines. Therefore, IRT3 functions as a Zn and Fe-uptake transporter in Arabidopsis.

Collaboration


Dive into the Stephan Clemens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Krämer

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge