Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Grimault is active.

Publication


Featured researches published by Stephan Grimault.


Human Brain Mapping | 2009

Oscillatory Activity in Parietal and Dorsolateral Prefrontal Cortex During Retention in Visual Short-Term Memory: Additive Effects of Spatial Attention and Memory Load

Stephan Grimault; Nicolas Robitaille; Christophe Grova; Jean-Marc Lina; Anne-Sophie Dubarry; Pierre Jolicœur

We used whole‐head magnetoencephalography to study the representation of objects in visual short‐term memory (VSTM) in the human brain. Subjects remembered the location and color of either two or four colored disks that were encoded from the left or right visual field (equal number of distractors in the other visual hemifield). The data were analyzed using time‐frequency methods, which enabled us to discover a strong oscillatory activity in the 8–15 Hz band during the retention interval. The study of the alpha power variation revealed two types of responses, in different brain regions. The first was a decrease in alpha power in parietal cortex, contralateral to the stimuli, with no load effect. The second was an increase of alpha power in parietal and lateral prefrontal cortex, as memory load increased, but without interaction with the hemifield of the encoded stimuli. The absence of interaction between side of encoded stimuli and memory load suggests that these effects reflect distinct underlying mechanisms. A novel method to localize the neural generators of load‐related oscillatory activity was devised, using cortically‐constrained distributed source‐localization methods. Some activations were found in the inferior intraparietal sulcus (IPS) and intraoccipital sulcus (IOS). Importantly, strong oscillatory activity was also found in dorsolateral prefrontal cortex (DLPFC). Alpha oscillatory activity in DLPFC was synchronized with the activity in parietal regions, suggesting that VSTM functions in the human brain may be implemented via a network that includes bilateral DLPFC and bilateral IOS/IPS as key nodes. Hum Brain Mapp, 2009.


Psychophysiology | 2009

Bilateral parietal and contralateral responses during maintenance of unilaterally encoded objects in visual short-term memory: Evidence from magnetoencephalography

Nicolas Robitaille; Stephan Grimault; Pierre Jolicœur

A component of the event-related magnetic field (ERMF) response was observed in magnetoencephalographic signals recorded during the maintenance of information in visual short-term memory (VSTM). This sustained posterior contralateral magnetic (SPCM) field is likely the magnetic equivalent of the sustained posterior contralateral negativity (SPCN) found in electrophysiology. Magnetoencephalography data showed, at the sensor level, a bilateral activation over the parietal cortex that increased in amplitude for higher memory load. Others sensors, also over the parietal cortex, showed an activation pattern similar to the SPCN with higher activation for the hemisphere contralateral to the visual field from which visual information was encoded. These two activation patterns suggest that the SPCN and SPCM are generated by a network of cortical sources that includes bilateral parietal loci, likely intra-parietal/intra-occipital cortex, and contralateral parietal sources.


Schizophrenia Research | 2007

Blunted activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia

A. Kaladjian; Régine Jeanningros; J.-M. Azorin; Stephan Grimault; Jean-Luc Anton; Pascale Mazzola-Pomietto

OBJECTIVES Previous functional magnetic resonance imaging (fMRI) studies have reported abnormal brain activation in individuals with schizophrenia during performance of motor inhibition tasks. We aimed to clarify brain functional abnormalities related to motor response inhibition in schizophrenia by using event-related fMRI in combination with a Go-NoGo task designed to control for non-inhibitory cognitive processes involved in task performance. METHOD We studied 21 schizophrenic patients and 21 healthy subjects, group-matched for age, sex, and performance accuracy on a Go-NoGo task during event-related fMRI. The task was designed so that Go and NoGo events were equally probable. Between-group activation differences were assessed using ANCOVAs with response time and IQ as covariates of non-interest. RESULTS Compared to healthy subjects, schizophrenic patients exhibited a significant decrease in activation during motor response inhibition in the right ventrolateral prefrontal cortex (VLPFC) only. There were no areas of increased brain activation in patients compared to healthy subjects. CONCLUSIONS Schizophrenic patients demonstrate a blunted activation in the right VLPFC, a region known to play a critical role in motor response inhibition. Further research should ascertain the contribution of the VLPFC dysfunction to the impulsive behavior observed in schizophrenia.


NeuroImage | 2010

Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory: fMRI, MEG, and EEG evidence from the same observers.

Nicolas Robitaille; René Marois; Jay Todd; Stephan Grimault; Douglas Cheyne; Pierre Jolicœur

Previous functional neuroimaging studies have shown that maintenance of centrally presented objects in visual short-term memory (VSTM) leads to bilateral increases of BOLD activations in IPS/IOS cortex, while prior electrophysiological work suggests that maintaining stimuli encoded from a single hemifield leads to a sustained posterior contralateral negativity (SPCN) in electrophysiology and magnetoencephalography. These two findings have never been investigated using the same physiological measures. We recorded the BOLD response using fMRI, magnetoencephalography (MEG), and electrophysiology (EEG), while subjects encoded visual stimuli from a single hemifield of a balanced display. The EEG showed an SPCN. However, no SPCN-like activation was observed in the BOLD signals. The BOLD response in parietal cortex remained bilateral, even after unilateral encoding of the stimuli, but MEG showed both bilateral and contralateral activations, each likely reflecting a sub portion of the neuronal populations participating in the maintenance of information in VSTM. Contrary to the assumption that BOLD, EEG, and MEG responses - that were each linked to the maintenance of information in VSTM - are markers of the same neuronal processes, our findings suggest that each technique reveals a somewhat distinct but overlapping neural signature of the mechanisms supporting visual short-term memory.


Neuropsychologia | 2013

Distinct electrophysiological indices of maintenance in auditory and visual short-term memory

Christine Lefebvre; François Vachon; Stephan Grimault; Jennifer Thibault; Synthia Guimond; Isabelle Peretz; Robert J. Zatorre; Pierre Jolicœur

We compared the electrophysiological correlates for the maintenance of non-musical tones sequences in auditory short-term memory (ASTM) to those for the short-term maintenance of sequences of coloured disks held in visual short-term memory (VSTM). The visual stimuli yielded a sustained posterior contralateral negativity (SPCN), suggesting that the maintenance of sequences of coloured stimuli engaged structures similar to those involved in the maintenance of simultaneous visual displays. On the other hand, maintenance of acoustic sequences produced a sustained negativity at fronto-central sites. This component is named the Sustained Anterior Negativity (SAN). The amplitude of the SAN increased with increasing load in ASTM and predicted individual differences in the performance. There was no SAN in a control condition with the same auditory stimuli but no memory task, nor one associated with visual memory. These results suggest that the SAN is an index of brain activity related to the maintenance of representations in ASTM that is distinct from the maintenance of representations in VSTM.


NeuroImage | 2014

Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: Evidence from magnetoencephalography

Stephan Grimault; Sophie Nolden; Christine Lefebvre; François Vachon; Krista L. Hyde; Isabelle Peretz; Robert J. Zatorre; Nicolas Robitaille; Pierre Jolicoeur

We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain.


Psychophysiology | 2011

Electrophysiological correlates of the maintenance of the representation of pitch objects in acoustic short‐term memory

Synthia Guimond; François Vachon; Sophie Nolden; Christine Lefebvre; Stephan Grimault; Pierre Jolicoeur

We studied the neuronal mechanisms that implement acoustic short-term memory (ASTM) for pitch using event-related potentials (ERP). Experiment 1 isolated an ERP component, the sustained anterior negativity (SAN), that increased in amplitude with increasing memory load in ASTM using stimuli with equal duration at all memory loads. The SAN load effect found in Experiment 1, when pitch had to be remembered to perform the task, was absent in Experiment 2 using the same sounds when memory was not required. In Experiment 3, the memory task was performed without or with concurrent articulatory suppression during the retention interval to prevent rehearsal via an articulatory loop. Load-related effects observed in Experiment 1 were found again, whether participants engaged in concurrent suppression or not. The results suggest that the SAN reflects activity required to maintain pitch objects in an ASTM system that is distinct from articulatory rehearsal.


NeuroImage | 2013

The retention of simultaneous tones in auditory short-term memory: A magnetoencephalography study☆

Sophie Nolden; Stephan Grimault; Synthia Guimond; Christine Lefebvre; Patrick Bermudez; Pierre Jolicoeur

We used magnetoencephalography (MEG) to localize brain activity related to the retention of tones differing in pitch. Participants retained one or two simultaneously presented tones. After a two second interval a test tone was presented and the task was to determine if that tone was in memory. We focused on brain activity during the retention interval that increased as the number of sounds retained in auditory short-term memory (ASTM) increased. Source analyses revealed that the superior temporal gyrus in both hemispheres is involved in ASTM. In the right hemisphere, the inferior temporal gyrus, the inferior frontal gyrus, and parietal structures also play a role. Our method provides good spatial and temporal resolution for investigating neuronal correlates of ASTM and, as it is the first MEG study using a memory load manipulation without using sequences of tones, it allowed us to isolate brain regions that most likely reflect the simple retention of tones.


Brain and Language | 2015

Neural changes associated with semantic processing in healthy aging despite intact behavioral performance

Jacinthe Lacombe; Pierre Jolicoeur; Stephan Grimault; Jessica Pineault; Sven Joubert

Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level.


Neuropsychologia | 2013

Electrophysiological correlates of the retention of tones differing in timbre in auditory short-term memory

Sophie Nolden; Patrick Bermudez; Kristelle Alunni-Menichini; Christine Lefebvre; Stephan Grimault; Pierre Jolicoeur

We examined the electrophysiological correlates of retention in auditory short-term memory (ASTM) for sequences of one, two, or three tones differing in timbre but having the same pitch. We focused on event-related potentials (ERPs) during the retention interval and revealed a sustained fronto-central ERP component (most likely a sustained anterior negativity; SAN) that became more negative as memory load increased. Our results are consistent with recent ERP studies on the retention of pitch and suggest that the SAN reflects brain activity mediating the low-level retention of basic acoustic features in ASTM. The present work shows that the retention of timbre shares common features with the retention of pitch, hence supporting the notion that the retention of basic sensory features is an active process that recruits modality-specific brain areas.

Collaboration


Dive into the Stephan Grimault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Nolden

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Patrick Bermudez

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert J. Zatorre

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Sven Joubert

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge