Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan W. Morris is active.

Publication


Featured researches published by Stephan W. Morris.


Nature | 2008

Activating mutations in ALK provide a therapeutic target in neuroblastoma.

Rani E. George; Takaomi Sanda; Megan Hanna; Stefan Fröhling; William Luther; Jianming Zhang; Yebin Ahn; Wenjun Zhou; Wendy B. London; Patrick McGrady; Liquan Xue; Sergey Zozulya; Vlad Edward Gregor; Thomas R. Webb; Nathanael S. Gray; D. Gary Gilliland; Lisa Diller; Heidi Greulich; Stephan W. Morris; Matthew Meyerson; A. Thomas Look

Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.


Oncogene | 1997

ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK)

Stephan W. Morris; Clayton W. Naeve; Prasad Mathew; Payton L James; Mark N. Kirstein; Xiaoli Cui; David P. Witte

Anaplastic Lymphoma Kinase (ALK) was originally identified as a member of the insulin receptor subfamily of receptor tyrosine kinases that acquires transforming capability when truncated and fused to nucleophosmin (NPM) in the t(2;5) chromosomal rearrangement associated with non-Hodgkins lymphoma, but further insights into its normal structure and function are lacking. Here, we characterize a full-length normal human ALK cDNA and its product, and determine the pattern of expression of its murine homologue in embryonic and adult tissues as a first step toward the functional assessment of the receptor. Analysis of the 6226 bp ALK cDNA identified an open reading frame encoding a 1620-amino acid (aa) protein of predicted mass ∼177 kDa that is most closely related to leukocyte tyrosine kinase (LTK), the two exhibiting 57% aa identity and 71% similarity over their region of overlap. Biochemical analysis demonstrated that the ∼177 kDa ALK polypeptide core undergoes co-translational N-linked glycosylation, emerging in its mature form as a 200 kDa single chain receptor. Surface labeling studies indicated that the 200 kDa glycoprotein is exposed at the cell membrane, consistent with the prediction that ALK serves as the receptor for an unidentified ligand(s). In situ hybridization studies revealed Alk expression beginning on embryonic day 11 and persisting into the neonatal and adult periods of development. Alk transcripts were confined to the nervous system and included several thalamic and hypothalamic nuclei; the trigeminal, facial, and acoustic cranial ganglia; the anterior horns of the spinal cord in the region of the developing motor neurons; the sympathetic chain; and the ganglion cells of the gut. Thus, ALK is a novel orphan receptor tyrosine kinase that appears to play an important role in the normal development and function of the nervous system.


The American Journal of Surgical Pathology | 2001

Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study.

James R. Cook; Louis P. Dehner; Margaret H. Collins; Zhigui Ma; Stephan W. Morris; Cheryl M. Coffin; D. Ashley Hill

Inflammatory myofibroblastic tumor (IMT) is an uncommon mesenchymal neoplasm with a variable histologic appearance that may mimic other spindle cell processes, particularly nodular fasciitis, desmoid tumor, and in intra-abdominal locations, gastrointestinal stromal tumor. Recently, gene fusions involving ALK at chromosome 2p23 have been described in IMTs. The resultant ALK protein overexpression in the myofibroblastic component of these tumors is detectable by immunohistochemistry. We examined 73 IMTs, 20 cases of nodular fasciitis, 15 desmoid fibromatoses, and 15 gastrointestinal stromal tumors by immunohistochemistry using ALK-11, a rabbit polyclonal antibody that recognizes the C-terminus of the protein. ALK positivity was detected in 44 of 73 (60%) IMTs. All cases of nodular fasciitis, desmoid fibromatosis, and gastrointestinal stromal tumors were ALK negative (p < 0.001). These findings demonstrate that ALK positivity is common in IMTs, and immunohistochemistry using anti-ALK antibodies can be helpful in the differential diagnosis of these neoplasms. In addition, anti-ALK staining seems to correlate with those IMTs that have the typical tri-patterned histologic appearance and clinical presentation, providing additional support to the premise that IMT is a distinctive clinicopathologic entity within the broad category of inflammatory pseudotumors.


Nature Genetics | 1999

Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32)

Quangeng Zhang; Reiner Siebert; Minhong Yan; Bernd Hinzmann; Xiaoli Cui; Liquan Xue; Karen M. Rakestraw; Clayton W. Naeve; Georg Beckmann; Dennis D. Weisenburger; Warren G. Sanger; Hadwiga Nowotny; Michael Vesely; Evelyne Callet-Bauchu; Gilles Salles; Vishva M. Dixit; André Rosenthal; Brigitte Schlegelberger; Stephan W. Morris

Mucosa-associated lymphoid tissue (MALT) lymphomas most frequently involve the gastrointestinal tract and are the most common subset of extranodal non-Hodgkin lymphoma (NHL). Here we describe overexpression of BCL10 , a novel apoptotic signalling gene that encodes an amino-terminal caspase recruitment domain (CARD; ref. 2), in MALT lymphomas due to the recurrent t(1;14)(p22;q32) (ref. 3). BCL10 cDNAs from t(1;14)-positive MALT tumours contained a variety of mutations, most resulting in truncations either in or carboxy terminal to the CARD. Wild-type BCL10 activated NF-κB but induced apoptosis of MCF7 and 293 cells. CARD-truncation mutants were unable to induce cell death or activate NF-κB, whereas mutants with C-terminal truncations retained NF-κB activation but did not induce apoptosis. Mutant BCL10 overexpression might have a twofold lymphomagenic effect: loss of BCL10 pro-apoptosis may confer a survival advantage to MALT B-cells, and constitutive NF-κB activation may provide both anti-apoptotic and proliferative signals mediated via its transcriptional targets.


Molecular and Cellular Biology | 1997

Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis.

Daniela Bischof; Karen Pulford; David Y. Mason; Stephan W. Morris

The NPM-ALK fusion gene, formed by the t(2;5)(p23;q35) translocation in non-Hodgkins lymphoma, encodes a 75-kDa hybrid protein that contains the amino-terminal 117 amino acid residues of the nucleolar phosphoprotein nucleophosmin (NPM) joined to the entire cytoplasmic portion of the receptor tyrosine kinase ALK (anaplastic lymphoma kinase). Here, we demonstrate the transforming ability of NPM-ALK and show that oncogenesis by the chimeric protein requires the activation of its kinase function as a result of oligomerization mediated by the NPM segment. Sedimentation gradient experiments revealed that NPM-ALK forms in vivo multimeric complexes of approximately 200 kDa or greater that also contain normal NPM. Cell fractionation studies of the t(2;5) translocation-containing lymphoma cell line SUP-M2 showed NPM-ALK to be localized within both the cytoplasmic and nuclear compartments. Immunostaining performed with both polyclonal and monoclonal anti-ALK antibodies confirmed the dual location of the oncoprotein and also indicated that NPM-ALK is abundant within both the nucleoplasm and the nucleolus. An intact NPM segment is absolutely required for NPM-ALK-mediated oncogenesis, as indicated by our observation that three different NPM-ALK mutant proteins lacking nonoverlapping portions of the NPM segment were each unable to form complexes, lacked kinase activity in vivo, and failed to transform cells. However, NPM could be functionally replaced in the fusion protein with the portion of the unrelated translocated promoter region (TPR) protein that activates the TPR-MET fusion kinase by mediating dimerization through its leucine zipper motif. This engineered TPR-ALK hybrid protein, which transformed cells almost as efficiently as NPM-ALK, was localized solely within the cytoplasm of cells. These data indicate that the nuclear and nucleolar localization of NPM-ALK, which probably occur because of transport via the shuttling activity of NPM, is not required for oncogenesis. Further, the activation of the truncated ALK protein by a completely heterologous oligomerization domain suggests that the functionally important role of the NPM segment of NPM-ALK in transformation is restricted to the formation of kinase-active oligomers and does not involve the alteration of normal NPM functions.


Bioinformatics | 2003

Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values

Stan Pounds; Stephan W. Morris

MOTIVATION The occurrence of false positives and false negatives in a microarray analysis could be easily estimated if the distribution of p-values were approximated and then expressed as a mixture of null and alternative densities. Essentially any distribution of p-values can be expressed as such a mixture by extracting a uniform density from it. RESULTS The occurrence of false positives and false negatives in a microarray analysis could be easily estimated if the distribution of p-values were approximated and then expressed as a mixture of null and alternative densities. Essentially any distribution of p-values can be expressed as such a mixture by extracting a uniform density from it. AVAILABILITY An S-plus function library is available from http://www.stjuderesearch.org/statistics.


American Journal of Pathology | 2001

Fusion of the ALK Gene to the Clathrin Heavy Chain Gene, CLTC, in Inflammatory Myofibroblastic Tumor

Julia A. Bridge; Masahiko Kanamori; Zhigui Ma; Diane L. Pickering; D. Ashley Hill; William M. Lydiatt; Man Yee Lui; Gisele W.B. Colleoni; Cristina R. Antonescu; Marc Ladanyi; Stephan W. Morris

Inflammatory myofibroblastic tumor (IMT) is a rare, but distinctive mesenchymal neoplasm composed of fascicles of bland myofibroblasts admixed with a prominent inflammatory component. Genetic studies of IMTs have demonstrated chromosomal abnormalities of 2p23 and rearrangement of the anaplastic lymphoma kinase (ALK) gene locus. In a subset of IMTs, the ALK C-terminal kinase domain is fused with a tropomyosin N-terminal coiled-coil domain. In the current study, fusion of ALK with the clathrin heavy chain (CTLC) gene localized to 17q23 was detected in two cases of IMT. One of these cases exhibited a 2;17 translocation in addition to other karyotypic anomalies [46,XX,t(2;17)(p23;q23),add(16)(q24)].


Molecular and Cellular Biology | 1998

Nucleophosmin-Anaplastic Lymphoma Kinase of Large-Cell Anaplastic Lymphoma Is a Constitutively Active Tyrosine Kinase That Utilizes Phospholipase C-γ To Mediate Its Mitogenicity

Ren Yuan Bai; Peter Dieter; Christian Peschel; Stephan W. Morris; Justus Duyster

ABSTRACT Large-cell anaplastic lymphoma is a subtype of non-Hodgkin’s lymphoma characterized by the expression of CD30. More than half of these lymphomas have a chromosomal translocation, t(2;5), that leads to the expression of a hybrid protein comprised of the nucleolar phosphoprotein nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK). Here we show that transfection of the constitutively active tyrosine kinase NPM-ALK into Ba/F3 and Rat-1 cells leads to a transformed phenotype. Oncogenic tyrosine kinases transform cells by activating the mitogenic signal transduction pathways, e.g., by binding and activating SH2-containing signaling molecules. We found that NPM-ALK binds most specifically to the SH2 domains of phospholipase C-γ (PLC-γ) in vitro. Furthermore, we showed complex formation of NPM-ALK and PLC-γ in vivo by coimmunoprecipitation experiments in large-cell anaplastic lymphoma cells. This complex formation leads to the tyrosine phosphorylation and activation of PLC-γ, which can be corroborated by enhanced production of inositol phosphates (IPs) in NPM-ALK-expressing cells. By phosphopeptide competition experiments, we were able to identify the tyrosine residue on NPM-ALK responsible for interaction with PLC-γ as Y664. Using site-directed mutagenesis, we constructed a comprehensive panel of tyrosine-to-phenylalanine NPM-ALK mutants, including NPM-ALK(Y664F). NPM-ALK(Y664F), when transfected into Ba/F3 cells, no longer forms complexes with PLC-γ or leads to PLC-γ phosphorylation and activation, as confirmed by low IP levels in these cells. Most interestingly, Ba/F3 and Rat-1 cells expressing NPM-ALK(Y664F) also show a biological phenotype in that they are not stably transformed. Overexpression of PLC-γ can partially rescue the proliferative response of Ba/F3 cells to the NPM-ALK(Y664F) mutant. Thus, PLC-γ is an important downstream target of NPM-ALK that contributes to its mitogenic activity and is likely to be important in the molecular pathogenesis of large-cell anaplastic lymphomas.


Journal of Immunology | 2002

Multilevel Dysregulation of STAT3 Activation in Anaplastic Lymphoma Kinase-Positive T/Null-Cell Lymphoma

Qian Zhang; Puthryaveett N. Raghunath; Liquan Xue; Miroslaw Majewski; David F. Carpentieri; Niels Ødum; Stephan W. Morris; Tomasz Skorski; Mariusz A. Wasik

Accumulating evidence indicates that expression of anaplastic lymphoma kinase (ALK), typically due to t(2;5) translocation, defines a distinct type of T/null-cell lymphoma (TCL). The resulting nucleophosmin (NPM) /ALK chimeric kinase is constitutively active and oncogenic. Downstream effector molecules triggered by NPM/ALK remain, however, largely unidentified. Here we report that NPM/ALK induces continuous activation of STAT3. STAT3 displayed tyrosine phosphorylation and DNA binding in all (four of four) ALK+ TCL cell lines tested. The activation of STAT3 was selective because none of the other known STATs was consistently tyrosine phosphorylated in these cell lines. In addition, malignant cells in tissue sections from all (10 of 10) ALK+ TCL patients expressed tyrosine-phosphorylated STAT3. Transfection of BaF3 cells with NPM/ALK resulted in tyrosine phosphorylation of STAT3. Furthermore, STAT3 was constitutively associated with NPM/ALK in the ALK+ TCL cell lines. Additional studies into the mechanisms of STAT3 activation revealed that the ALK+ TCL cells expressed a positive regulator of STAT3 activation, protein phosphatase 2A (PP2A), which was constitutively associated with STAT3. Treatment with the PP2A inhibitor calyculin A abrogated tyrosine phosphorylation of STAT3. Finally, ALK+ T cells failed to express a negative regulator of activated STAT3, protein inhibitor of activated STAT3. These data indicate that NPM/ALK activates STAT3 and that PP2A and lack of protein inhibitor of activated STAT3 may be important in maintaining STAT3 in the activated state in the ALK+ TCL cells. These results also suggest that activated STAT3, which is known to display oncogenic properties, as well as its regulatory molecules may represent attractive targets for novel therapies in ALK+ TCL.


Oncogene | 2001

Translocations involving anaplastic lymphoma kinase (ALK)

Justus Duyster; Ren Yuan Bai; Stephan W. Morris

Anaplastic large-cell lymphoma (ALCL) comprises a group of non-Hodgkins lymphomas (NHLs) that were first described in 1985 by Stein and co-workers and are characterized by the expression of the CD30/Ki-1 antigen (Stein et al., 1985). Approximately half of these lymphomas are associated with a typical chromosomal translocation, t(2;5)(p23;q35). Much confusion about the exact classification and clinicopathological features of this subgroup of NHL was clarified with the identification of NPM–ALK (nucleophosmin-anaplastic lymphoma kinase) as the oncogene created by the t(2;5) (Morris et al., 1994). With the discovery of NPM–ALK as the specific lymphoma gene mutation, this NHL subtype could be redefined on the molecular level. This achievement was enhanced by the availability of specific antibodies that recognize ALK fusion proteins in paraffin-embedded lymphoma tissues. Several excellent recent reviews have summarized the histopathological and molecular findings of ALCL and their use in the classification of this lymphoma entity (Anagnostopoulos and Stein, 2000; Benharroch et al., 1998; Drexler et al., 2000; Foss et al., 2000; Gogusev and Nezelof, 1998; Kadin and Morris, 1998; Ladanyi, 1997; Morris et al., 2001; Shiota and Mori, 1996; Skinnider et al., 1999; Stein et al., 2000). This review will focus on the molecular function and signal transduction pathways activated by ALK fusion oncogenes, with recent advances and possible clinical implications to be discussed.

Collaboration


Dive into the Stephan W. Morris's collaboration.

Top Co-Authors

Avatar

Liquan Xue

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Cui

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David N. Shapiro

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhigui Ma

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Jiang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Marcus B. Valentine

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Webb

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Virginia Valentine

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge