Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Romac is active.

Publication


Featured researches published by Sarah Romac.


Science | 2015

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano

Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.


Current Biology | 2014

Patterns of Rare and Abundant Marine Microbial Eukaryotes

Ramiro Logares; Stéphane Audic; David Bass; Lucie Bittner; Christophe Boutte; Richard Christen; Jean-Michel Claverie; Johan Decelle; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Angélique Gobet; Wiebe H. C. F. Kooistra; Frédéric Mahé; Fabrice Not; Hiroyuki Ogata; Jan Pawlowski; Massimo C. Pernice; Sarah Romac; Kamran Shalchian-Tabrizi; Nathalie Simon; Thorsten Stoeck; Sébastien Santini; Raffaele Siano; Patrick Wincker; Adriana Zingone; Thomas A. Richards; Colomban de Vargas; Ramon Massana

BACKGROUND Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. RESULTS Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. CONCLUSIONS We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time.


Environmental Microbiology | 2015

Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

Ramon Massana; Angélique Gobet; Stéphane Audic; David Bass; Lucie Bittner; Christophe Boutte; Aurélie Chambouvet; Richard Christen; Jean-Michel Claverie; Johan Decelle; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Irene Forn; Dominik Forster; Laure Guillou; Olivier Jaillon; Wiebe H. C. F. Kooistra; Ramiro Logares; Frédéric Mahé; Fabrice Not; Hiroyuki Ogata; Jan Pawlowski; Massimo C. Pernice; Ian Probert; Sarah Romac; Thomas A. Richards; Sébastien Santini; Kamran Shalchian-Tabrizi; Raffaele Siano

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.


Molecular Ecology | 2013

Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay.

Lucie Bittner; Angélique Gobet; Stéphane Audic; Sarah Romac; Elianne Sirnæs Egge; Sébastien Santini; Hiroyuki Ogata; Ian Probert; Bente Edvardsen

Haptophytes are a key phylum of marine protists, including ~300 described morphospecies and 80 morphogenera. We used 454 pyrosequencing on large subunit ribosomal DNA (LSU rDNA) fragments to assess the diversity from size‐fractioned plankton samples collected in the Bay of Naples. One group‐specific primer set targeting the LSU rDNA D1/D2 region was designed to amplify Haptophyte sequences from nucleic acid extracts (total DNA or RNA) of two size fractions (0.8–3 or 3–20 μm) and two sampling depths [subsurface, at 1 m, or deep chlorophyll maximum (DCM) at 23 m]. 454 reads were identified using a database covering the entire Haptophyta diversity currently sequenced. Our data set revealed several hundreds of Haptophyte clusters. However, most of these clusters could not be linked to taxonomically known sequences: considering OTUs97% (clusters build at a sequence identity level of 97%) on our global data set, less than 1% of the reads clustered with sequences from cultures, and less than 12% clustered with reference sequences obtained previously from cloning and Sanger sequencing of environmental samples. Thus, we highlighted a large uncharacterized environmental genetic diversity, which clearly shows that currently cultivated species poorly reflect the actual diversity present in the natural environment. Haptophyte community appeared to be significantly structured according to the depth. The highest diversity and evenness were obtained in samples from the DCM, and samples from the large size fraction (3–20 μm) taken at the DCM shared a lower proportion of common OTUs97% with the other samples. Reads from the species Chrysoculter romboideus were notably found at the DCM, while they could be detected at the subsurface. The highest proportion of totally unknown OTUs97% was collected at the DCM in the smallest size fraction (0.8–3 μm). Overall, this study emphasized several technical and theoretical barriers inherent to the exploration of the large and largely unknown diversity of unicellular eukaryotes.


Molecular Biology and Evolution | 2014

Placing environmental next generation sequencing amplicons from microbial eukaryotes into a phylogenetic context

Micah Dunthorn; Johannes Otto; Simon A. Berger; Alexandros Stamatakis; Frédéric Mahé; Sarah Romac; Colomban de Vargas; Stéphane Audic; Alexandra Stock; Frank Kauff; Thorsten Stoeck

Nucleotide positions in the hypervariable V4 and V9 regions of the small subunit (SSU)-rDNA locus are normally difficult to align and are usually removed before standard phylogenetic analyses. Yet, with next-generation sequencing data, amplicons of these regions are all that are available to answer ecological and evolutionary questions that rely on phylogenetic inferences. With ciliates, we asked how inclusion of the V4 or V9 regions, regardless of alignment quality, affects tree topologies using distinct phylogenetic methods (including PairDist that is introduced here). Results show that the best approach is to place V4 amplicons into an alignment of full-length Sanger SSU-rDNA sequences and to infer the phylogenetic tree with RAxML. A sliding window algorithm as implemented in RAxML shows, though, that not all nucleotide positions in the V4 region are better than V9 at inferring the ciliate tree. With this approach and an ancestral-state reconstruction, we use V4 amplicons from European nearshore sampling sites to infer that rather than being primarily terrestrial and freshwater, colpodean ciliates may have repeatedly transitioned from terrestrial/freshwater to marine environments.


The ISME Journal | 2013

Vampires in the oceans: predatory cercozoan amoebae in marine habitats

Cédric Berney; Sarah Romac; Frédéric Mahé; Sébastien Santini; Raffaele Siano; David Bass

Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.


Molecular Ecology Resources | 2015

PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy

Johan Decelle; Sarah Romac; Rowena Stern; El Mahdi Bendif; Adriana Zingone; Stéphane Audic; Michael D. Guiry; Laure Guillou; Désiré Tessier; Florence Le Gall; Priscillia Gourvil; Adriana Lopes dos Santos; Ian Probert; Daniel Vaulot; Colomban de Vargas; Richard Christen

Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny‐based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high‐throughput sequencing.


FEMS Microbiology Ecology | 2011

Whole-genome amplification (WGA) of marine photosynthetic eukaryote populations

Cécile Lepère; Mikihide Demura; Masanobu Kawachi; Sarah Romac; Ian Probert; Daniel Vaulot

Metagenomics approaches have been developing rapidly in marine sciences. However, the application of these approaches to marine eukaryotes, and in particular to the smallest ones, is challenging because marine microbial communities are dominated by prokaryotes. One way to circumvent this problem is to separate eukaryotic cells using techniques such as single-cell pipetting or flow cytometry sorting. However, the number of cells that can be recovered by such techniques remains low and genetic material needs to be amplified before metagenomic sequencing can be undertaken. In this methodological study, we tested the application of whole-genome amplification (WGA) to photosynthetic eukaryotes. We performed various optimization steps both on a mixture of known microalgal strains and on natural photosynthetic eukaryote populations sorted by flow cytometry. rRNA genes were used as markers for assessing the efficiency of different protocols. Our data indicate that WGA is suitable for the amplification of photosynthetic eukaryote genomes, but that biases are induced, reducing the diversity of the initial population. Nonetheless, this approach appears to be suitable for obtaining metagenomics data on microbial eukaryotic communities.


BMC Biology | 2015

Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms

Dominik Forster; Lucie Bittner; Slim Karkar; Micah Dunthorn; Sarah Romac; Stéphane Audic; Philippe Lopez; Thorsten Stoeck; Eric Bapteste

BackgroundHigh-throughput sequencing technologies are lifting major limitations to molecular-based ecological studies of eukaryotic microbial diversity, but analyses of the resulting millions of short sequences remain a major bottleneck for these approaches. Here, we introduce the analytical and statistical framework of sequence similarity networks, increasingly used in evolutionary studies and graph theory, into the field of ecology to analyze novel pyrosequenced V4 small subunit rDNA (SSU-rDNA) sequence data sets in the context of previous studies, including SSU-rDNA Sanger sequence data from cultured ciliates and from previous environmental diversity inventories.ResultsOur broadly applicable protocol quantified the progress in the description of genetic diversity of ciliates by environmental SSU-rDNA surveys, detected a fundamental historical bias in the tendency to recover already known groups in these surveys, and revealed substantial amounts of hidden microbial diversity. Moreover, network measures demonstrated that ciliates are not globally dispersed, but are structured by habitat and geographical location at intermediate geographical scale, as observed for bacteria, plants, and animals.ConclusionsCurrently available ‘universal’ primers used for local in-depth sequencing surveys provide little hope to exhaust the significantly higher ciliate (and most likely microbial) diversity than previously thought. Network analyses such as presented in this study offer a promising way to guide the design of novel primers and to further explore this vast and structured microbial diversity.


PLOS ONE | 2014

Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing

Johan Decelle; Sarah Romac; Eriko Sasaki; Fabrice Not; Frédéric Mahé

Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment.

Collaboration


Dive into the Sarah Romac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Mahé

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Micah Dunthorn

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

David Bass

Centre for Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucie Bittner

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge