Stéphane Basmaciogullari
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Basmaciogullari.
Blood | 2011
Jérôme Bouchet; Stéphane Basmaciogullari; Pavel Chrobak; Bettina Stolp; Nathalie Bouchard; Oliver T. Fackler; Patrick Chames; Paul Jolicoeur; Serge Benichou; Daniel Baty
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
PLOS ONE | 2009
Bénédicte Py; Stéphane Basmaciogullari; Jérôme Bouchet; Marion Zarka; Ivan C. Moura; Marc Benhamou; Renato C. Monteiro; Hakim Hocini; Ricardo Madrid; Serge Benichou
Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention.
Molecular Aspects of Medicine | 2010
Nadine Laguette; Christelle Brégnard; Serge Benichou; Stéphane Basmaciogullari
The genomes of all retroviruses encode the Gag Pol and Env structural proteins. Human and simian lentiviruses have acquired non-structural proteins among which Nef plays a major role in the evolution of viral infection towards an immunodeficiency syndrome. Indeed, in the absence of a functional nef gene, primate lentiviruses are far less pathogenic than their wild type counterparts. The multiple protein-protein interactions in which Nef is involved all contribute to explain the role played by Nef in HIV- and SIV-associated disease progression. This review summarizes common and distinct features among Nef proteins and how they contribute to increasing HIV and SIV fitness towards their respective hosts.
Traffic | 2007
Anne Burtey; Joshua Z. Rappoport; Jérôme Bouchet; Stéphane Basmaciogullari; John C. Guatelli; Sanford M. Simon; Serge Benichou; Alexandre Benmerah
The HIV‐1 Nef protein perturbs the trafficking of membrane proteins such as CD4 by interacting with clathrin–adaptor complexes. We previously reported that Nef alters early/recycling endosomes, but its role at the plasma membrane is poorly documented. Here, we used total internal reflection fluorescence microscopy, which restricts the analysis to a ∼100 nm region of the adherent surface of the cells, to focus on the dynamic of Nef at the plasma membrane relative to that of clathrin. Nef colocalized both with clathrin spots (CS) that remained static at the cell surface, corresponding to clathrin‐coated pits (CCPs), and with ∼50% of CS that disappeared from the cell surface, corresponding to forming clathrin‐coated vesicles (CCVs). The colocalization of Nef with clathrin required the di‐leucine motif essential for Nef binding to AP complexes and was independent of CD4 expression. Furthermore, analysis of Nef mutants showed that the capacity of Nef to induce internalization and downregulation of CD4 in T lymphocytes correlated with its localization into CCPs. In conclusion, this analysis shows that Nef is recruited into CCPs and into forming CCVs at the plasma membrane, in agreement with a model in which Nef uses the clathrin‐mediated endocytic pathway to induce internalization of some membrane proteins from the surface of HIV‐1‐infected T cells.
Journal of Virology | 2009
Nadine Laguette; Serge Benichou; Stéphane Basmaciogullari
ABSTRACT The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.
Journal of Virology | 2009
Nadine Laguette; Christelle Brégnard; Jérôme Bouchet; Alexandre Benmerah; Serge Benichou; Stéphane Basmaciogullari
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef interferes with the endocytic machinery to modulate the cell surface expression of CD4. However, the basal trafficking of CD4 is governed by different rules in the target cells of HIV-1: whereas CD4 is rapidly internalized from the cell surface in myeloid cells, CD4 is stabilized at the plasma membrane through its interaction with the p56lck kinase in lymphoid cells. In this study, we showed that Nef was able to downregulate CD4 in both lymphoid and myeloid cell lines but that an increase in the internalization rate of CD4 could be observed only in lymphoid cells. Expression of p56lck in nonlymphoid CD4-expressing cells restores the ability of Nef in order to increase the internalization rate of CD4. Concurrent with this observation, the expression of a p56lck-binding-deficient mutant of CD4 in lymphoid cells abrogates the Nef-induced acceleration of CD4 internalization. We also show that the expression of Nef causes a decrease in the association of p56lck with cell surface-expressed CD4. Regardless of the presence of p56lck, the downregulation of CD4 by Nef was followed by CD4 degradation. Our results imply that Nef uses distinct mechanisms to downregulate the cell surface expression levels of CD4 in either lymphoid or myeloid target cells of HIV-1.
Apoptosis | 2007
Bénédicte F. Py; Jérôme Bouchet; Guillaume Jacquot; Nathalie Sol-Foulon; Stéphane Basmaciogullari; Olivier Schwartz; Martine Biard-Piechaczyk; Serge Benichou
In addition to its positive signaling function in the antigen presentation process, CD4 acts as the primary receptor for HIV-1. Contact between CD4 and the viral envelope leads to virus entry, but can also trigger apoptosis of uninfected CD4+ T-cells through a mechanism that is poorly understood. We show that Siva-1, a death domain-containing proapoptotic protein, associates with the cytoplasmic domain of CD4. This interaction is mediated by the cysteine-rich region found in the C-terminal part of the Siva-1 protein. Expression of Siva-1 specifically increases the susceptibility of both T-cell lines and unstimulated human primary CD4+ T-lymphocytes to CD4-mediated apoptosis triggered by the HIV-1 envelope, and results in activation of a caspase-dependent mitochondrial pathway. The same susceptibility is observed in T-cells expressing a truncated form of CD4 that is able to recruit Siva-1 but fails to associate with p56Lck, indicating that Siva-1 participates in a pathway independent of the p56Lck kinase activity. Altogether, these results suggest that Siva-1 might participate in the CD4-initiated signaling apoptotic pathway induced by the HIV-1 envelope in T-lymphoid cells.
Archive | 2008
Daniel Baty; Martine Chartier; Patrick Chames; Serge Benichou; Stéphane Basmaciogullari; Jérôme Bouchet
Archive | 2012
Oliver T. Fackler; Patrick Chames; Paul Jolicoeur; Serge Benichou; Daniel Baty; Jérôme Bouchet; Stéphane Basmaciogullari; Pavel Chrobak; Bettina Stolp; Nathalie Bouchard
Archive | 2010
Serge Benichou; Stéphane Basmaciogullari; Bénédicte Py; Jérôme Bouchet; Ricardo Madrid; Benoit Deprez; Florence Leroux