Stéphane Cociancich
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Cociancich.
BMC Genomics | 2009
Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrère; Ralf Koebnik; Stéphane Cociancich; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Véronique Verdier; Mathieu Arlat; Philippe Rott
BackgroundThe Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences.ResultsThe complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens.ConclusionThe two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.
Nature Chemical Biology | 2015
Stéphane Cociancich; Alexander Pesic; Daniel Petras; Stefanie Uhlmann; Julian Kretz; Vivien Schubert; Laura Vieweg; Sandrine Duplan; Mélanie Marguerettaz; Julie Noëll; Isabelle Pieretti; Manuela Hügelland; Sebastian Kemper; Andi Mainz; Philippe Rott; Monique Royer; Roderich D. Süssmuth
Albicidin is a potent DNA gyrase inhibitor produced by the sugarcane pathogenic bacterium Xanthomonas albilineans. Here we report the elucidation of the hitherto unknown structure of albicidin, revealing a unique polyaromatic oligopeptide mainly composed of p-aminobenzoic acids. In vitro studies provide further insights into the biosynthetic machinery of albicidin. These findings will enable structural investigations on the inhibition mechanism of albicidin and its assessment as a highly effective antibacterial drug.
BMC Genomics | 2013
Armelle Darrasse; Sébastien Carrère; Valérie Barbe; Tristan Boureau; Mario L Arrieta-Ortiz; Sophie Bonneau; Martial Briand; Chrystelle Brin; Stéphane Cociancich; Karine Durand; Stéphanie Fouteau; Lionel Gagnevin; Fabien Guérin; Endrick Guy; Arnaud Indiana; Ralf Koebnik; Emmanuelle Lauber; Alejandra Munoz; Laurent D. Noël; Isabelle Pieretti; Stéphane Poussier; Olivier Pruvost; Isabelle Robène-Soustrade; Philippe Rott; Monique Royer; Laurana Serres-Giardi; Boris Szurek; Marie-Anne Van Sluys; Valérie Verdier; Christian Vernière
BackgroundXanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences.ResultsComparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations.ConclusionsThis work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.
Annual Review of Phytopathology | 2016
Marie-Agnès Jacques; Matthieu Arlat; Alice Boulanger; Tristan Boureau; Sébastien Carrère; Sophie Cesbron; Nicolas W.G. Chen; Stéphane Cociancich; Armelle Darrasse; Nicolas Denancé; Marion Fischer-Le Saux; Lionel Gagnevin; Ralf Koebnik; Emmanuelle Lauber; Laurent D. Noël; Isabelle Pieretti; Perrine Portier; Olivier Pruvost; Adrien Rieux; Isabelle Robène; Monique Royer; Boris Szurek; Valérie Verdier; Christian Vernière
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
BMC Genomics | 2012
Isabelle Pieretti; Monique Royer; Valérie Barbe; Sébastien Carrère; Ralf Koebnik; Arnaud Couloux; Armelle Darrasse; Jérôme Gouzy; Marie-Agnès Jacques; Emmanuelle Lauber; Charles Manceau; Sophie Mangenot; Stéphane Poussier; Béatrice Segurens; Boris Szurek; Valérie Verdier; Matthieu Arlat; Dean W. Gabriel; Philippe Rott; Stéphane Cociancich
BackgroundXanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity.ResultsComparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems.ConclusionsThis study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.
Phytopathology | 2006
Patrice Champoiseau; Jean-Heinrich Daugrois; Isabelle Pieretti; Stéphane Cociancich; Monique Royer; Philippe Rott
ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.
Angewandte Chemie | 2015
Julian Kretz; Dennis Kerwat; Vivien Schubert; Stefan Grätz; Alexander Pesic; Siamak Semsary; Stéphane Cociancich; Monique Royer; Roderich D. Süssmuth
The peptide antibiotic albicidin, which is synthesized by the plant pathogenic bacterium Xanthomonas albilineans, displays remarkable antibacterial activity against various Gram-positive and Gram-negative microorganisms. The low amounts of albicidin obtainable from the producing organism or through heterologous expression are limiting factors in providing sufficient material for bioactivity profiling and structure-activity studies. Therefore, we developed a convergent total synthesis route toward albicidin. The unexpectedly difficult formation of amide bonds between the aromatic amino acids was achieved through a triphosgene-mediated coupling strategy. The herein presented synthesis of albicidin confirms the previously determined chemical structure and underlines the extraordinary antibacterial activity of this compound. The synthetic protocol will provide multigram amounts of albicidin for further profiling of its drug properties.
Molecular Plant-microbe Interactions | 2011
Mélanie Marguerettaz; Isabelle Pieretti; Philippe Gayral; Jérôme Puig; Chrystelle Brin; Stéphane Cociancich; Stéphane Poussier; Philippe Rott; Monique Royer
Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans.
Antimicrobial Agents and Chemotherapy | 2007
Eric Vivien; Delphine Pitorre; Stéphane Cociancich; Isabelle Pieretti; Dean W. Gabriel; Philippe Rott; Monique Royer
ABSTRACT The phytotoxin and polyketide antibiotic albicidin produced by Xanthomonas albilineans is a highly potent DNA gyrase inhibitor. Low yields of albicidin production have slowed studies of its chemical structure. Heterologous expression of albicidin biosynthetic genes in X. axonopodis pv. vesicatoria resulted in a sixfold increase in albicidin production, offering promising strategies for engineering overproduction.
BMC Genomics | 2013
Monique Royer; Ralf Koebnik; Mélanie Marguerettaz; Valérie Barbe; Guillaume P. Robin; Chrystelle Brin; Sébastien Carrère; Camila Gomez; Manuela Hügelland; Ginka H. Völler; Julie Noëll; Isabelle Pieretti; Saskia Rausch; Valérie Verdier; Stéphane Poussier; Philippe Rott; Roderich D. Süssmuth; Stéphane Cociancich
BackgroundVarious bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas.ResultsWe performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari.ConclusionsThis study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.