Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphane Roy is active.

Publication


Featured researches published by Stéphane Roy.


The FASEB Journal | 2006

Identification of CD109 as part of the TGF-β receptor system in human keratinocytes

Kenneth W. Finnson; Betty Tam; Kai Liu; Anne Marcoux; Pierre Lepage; Stéphane Roy; Albane A. Bizet; Anie Philip

We have previously reported that keratinocytes defective in glycosylphosphatidylinositol (GPI)‐anchor biosynthesis display enhanced TGF‐β responses. These studies implicated the involvement of a 150 kDa GPI‐anchored TGF‐β1 binding protein, r150, in modulating TGF‐β signaling. Here, we sought to determine the molecular identity of r150 by affinity purification and microsequencing. Our results identify r150 as CD109, a novel member of the α2‐macroglob‐ulin (α2M)/complement superfamily, whose function has remained obscure. In addition, we have identified a novel CD109 isoform that occurs in the human placenta but not keratinocytes. Biochemical studies show that r150 contains an internal thioester bond, a defining feature of the α2M/complement family. Loss and gain of function studies demonstrate that CD109 is a component of the TGF‐β receptor system, and a negative modulator of TGF‐β responses in keratinocytes, as implicated for r150. Our data suggest that CD109 can inhibit TGF‐β signaling independently of ligand sequestration and may exert its effect on TGF‐β signaling by direct modulation of receptor activity. Together, our results linking CD109 function to regulation of TGF‐β signaling suggest that CD109 plays a unique role in the regulation of isoform‐specific TGF‐β signaling in keratinocytes.—Finnson, K. W., Tam, B. Y. Y., Liu, K., Marcoux, A., Lepage, P., Roy, S., Bizet, A. A., Philip, A. Identification of CD109 as a TGF‐β1 accessory receptor in human keratinocytes. FASEB J. 20, E780–E795 (2006)


American Journal of Physiology-renal Physiology | 1998

Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney

Harriet S. Tenenhouse; Stéphane Roy; Josée Martel; Claude Gauthier

Three classes of high-affinity Na+-Pi cotransporters are expressed in mammalian kidney. These include Npt1 (type I), Npt2 (type II), and the cellular receptors for gibbon ape leukemia virus (Glvr-1) and amphotropic murine retrovirus (Ram-1) (type III). We defined the tissue distribution as well as the relative renal abundance of Npt1, Npt2, Glvr-1, and Ram-1 mRNAs and examined the effects of low-Pi diet, the Hyp mutation, and growth hormone (GH) on their renal expression by ribonuclease protection assay. In normal mouse kidney, Npt1, Npt2, Glvr-1, and Ram-1 accounted for 15 +/- 1.0, 84 +/- 1.0, 0.5 +/- 0.2, and 0.5 +/- 0.3% of total Na+-Pi cotransporter mRNAs, respectively. Evidence was obtained for low-abundance Npt1 mRNA expression in liver and Npt2 mRNA expression in intestine, whereas Glvr-1 and Ram-1 mRNAs were also detected in bone, intestine, heart, and liver. Npt2 mRNA was localized to proximal tubules in the renal outer cortex, whereas Glvr-1 transcripts were detected throughout the kidney by in situ hybridization. The Hyp mutation elicited a significant reduction in renal Npt1 and Npt2 mRNAs (78 +/- 8 and 57 +/- 3% of normal, respectively), whereas neither low-Pi diet nor GH influenced the renal abundance of Npt1 and Npt2 transcripts. Renal Glvr-1 mRNA expression was significantly increased in Hyp mice and GH-treated mice (145 +/- 6 and 165 +/- 5% of control, respectively), whereas the renal abundance of Ram-1 transcript was unaffected by either the Hyp mutation, low-Pi diet, or GH treatment. In summary, we demonstrate that Npt2 is the predominant Na+-Pi cotransporter in mouse kidney, that Npt2 and Glvr-1 have distinct patterns of renal expression, and that the Hyp mutation modulates the renal expression of Npt1, Npt2, and Glvr-1 mRNAs. Our results suggest that increased renal Glvr-1 mRNA may contribute to GH stimulation of renal Na+-Pi cotransport.Three classes of high-affinity Na+-Picotransporters are expressed in mammalian kidney. These include Npt1 (type I), Npt2 (type II), and the cellular receptors for gibbon ape leukemia virus (Glvr-1) and amphotropic murine retrovirus (Ram-1) (type III). We defined the tissue distribution as well as the relative renal abundance of Npt1, Npt2, Glvr-1, and Ram-1 mRNAs and examined the effects of low-Pi diet, the Hyp mutation, and growth hormone (GH) on their renal expression by ribonuclease protection assay. In normal mouse kidney, Npt1, Npt2, Glvr-1, and Ram-1 accounted for 15 ± 1.0, 84 ± 1.0, 0.5 ± 0.2, and 0.5 ± 0.3% of total Na+-Picotransporter mRNAs, respectively. Evidence was obtained for low-abundance Npt1 mRNA expression in liver and Npt2 mRNA expression in intestine, whereas Glvr-1 and Ram-1 mRNAs were also detected in bone, intestine, heart, and liver. Npt2 mRNA was localized to proximal tubules in the renal outer cortex, whereas Glvr-1 transcripts were detected throughout the kidney by in situ hybridization. The Hyp mutation elicited a significant reduction in renal Npt1 and Npt2 mRNAs (78 ± 8 and 57 ± 3% of normal, respectively), whereas neither low-Pi diet nor GH influenced the renal abundance of Npt1 and Npt2 transcripts. Renal Glvr-1 mRNA expression was significantly increased in Hyp mice and GH-treated mice (145 ± 6 and 165 ± 5% of control, respectively), whereas the renal abundance of Ram-1 transcript was unaffected by either the Hyp mutation, low-Pi diet, or GH treatment. In summary, we demonstrate that Npt2 is the predominant Na+-Picotransporter in mouse kidney, that Npt2 and Glvr-1 have distinct patterns of renal expression, and that the Hyp mutation modulates the renal expression of Npt1, Npt2, and Glvr-1 mRNAs. Our results suggest that increased renal Glvr-1 mRNA may contribute to GH stimulation of renal Na+-Picotransport.


PLOS ONE | 2007

Transforming Growth Factor: β Signaling Is Essential for Limb Regeneration in Axolotls

Mathieu Lévesque; Samuel Gatien; Kenneth W. Finnson; Sophie Desmeules; Éric Villiard; Mireille Pilote; Anie Philip; Stéphane Roy

Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-β). In the present study, the full length sequence of the axolotl TGF-β1 cDNA was isolated. The spatio-temporal expression pattern of TGF-β1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-β signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-β type I receptor, SB-431542, we show that TGF-β signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-β signaling are down-regulated. These data directly implicate TGF-β signaling in the initiation and control of the regeneration process in axolotls.


Journal of Experimental Zoology | 2010

Skin wound healing in axolotls: a scarless process.

Mathieu Lévesque; Éric Villiard; Stéphane Roy

Urodele amphibians, such as the axolotl (Ambystoma mexicanum), have the unique faculty among vertebrates to regenerate lost appendages (limbs and tail) and other body parts (apex of the heart, forebrain and jaw) after amputation. Interestingly, axolotls never seem to form scar tissue at the site of amputation once regeneration is completed. Before now, very few studies were directly focused on the description of the events happening during wound healing after a skin injury in salamanders. In this paper, we directly investigated skin wound healing after excisional wounding which removed the epidermis, dermis and basement membrane in the axolotl. Axolotls were wounded with a 1.5-mm skin biopsy punch. Results show rapid re-epithelialization of the wound within 8 hrs after wounding. Histological analysis of wound healing confirmed the absence of tissue fibrosis throughout the process and shows that skin integrity is re-established by 90 days after wounding. Results also reveal the absence of neutrophils in the wound area, suggestive of a lack of or low inflammatory response. The expression of proteins central to wound healing seemed different than in mammals as α-smooth muscle actin was absent and transforming growth factor β-1 was only transiently expressed during wound healing in the axolotl. Finally, subcutaneous injections of bleomycin were performed to verify whether the induction of scar tissue was possible in axolotls. Surprisingly, results show that axolotls are not resistant to bleomycin-induced tissue fibrosis, but the resulting scar tissue does not seem to contain significant amounts of collagen.


Experimental Gerontology | 2008

Regeneration in axolotls: a model to aim for!

Stéphane Roy; Samuel Gatien

Urodele amphibians such as the axolotl are the champions of tissue regeneration amongst vertebrates. These animals have mastered the ability to repair and replace most of their tissues following damage or amputation even well into adulthood. In fact it seems that the ability of these organisms to regenerate perfectly is not affected by their age. In addition to being able to regenerate, these animals display a remarkable resistance to cancer. They therefore represent a unique model organism to study regeneration and cancer resistance in vertebrates. The need for this research is even more pressing at the dawn of the 21st century as we are faced with an ever aging world population which has to deal with an increase in organ failure and cancer incidence. Hopefully, this mini review will put in perspective some of the reasons why studying tissue regeneration in salamanders could yield significant knowledge to help regenerative medicine achieve the desired goal of allowing humans to repair and regenerate some of their own tissues as they age.


Development Growth & Differentiation | 2008

Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.

Sukla Ghosh; Stéphane Roy; Carl Séguin; Susan V. Bryant; David M. Gardiner

Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non‐canonical Wnt genes, Wnt‐5a and Wnt‐5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt‐5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration‐competent cells of the blastema.


BMC Evolutionary Biology | 2007

Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer.

Éric Villiard; Henner Brinkmann; Olga Moiseeva; Frédérick A. Mallette; Gerardo Ferbeyre; Stéphane Roy

BackgroundUrodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level.ResultsBlocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan) and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts), which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2) or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45.ConclusionUrodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However, other significant changes in the axolotl proteins may play more subtle roles on p53 functions, including DNA binding and promoter specificity and could represent useful adaptations to ensure p53 activity and tumor suppression in animals able to regenerate or subject to large variations in oxygen levels or temperature.


BMC Developmental Biology | 2010

BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

Jean-Charles Guimond; Mathieu Lévesque; Pierre-Luc Michaud; Jérémie Berdugo; Kenneth W. Finnson; Anie Philip; Stéphane Roy

BackgroundAxolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas) in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration.ResultsThe expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration) but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor) in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division.ConclusionThe expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has described in other tetrapods. Overexpression of BMP-2 did not cause the formation of extra digits, which is consistent with the hypothesis that it is not the secondary signal of sonic hedgehog. However, it did cause the formation of hypomorphic limbs as a result of increased cellular condensation and apoptosis. Taken together, these results suggest that BMP-2 does not have a direct role in patterning regenerating limbs but may be important to trigger condensation prior to ossification and to mediate apoptosis.


Developmental Dynamics | 2005

Expression of heat-shock protein 70 during limb development and regeneration in the axolotl.

Mathieu Lévesque; Jean-Charles Guimond; Mireille Pilote; Severine Leclerc; Florina Moldovan; Stéphane Roy

Urodele amphibians (e.g., axolotls) have the unique ability, among vertebrates, to regenerate perfectly many parts of their body after amputation. The limb has been the most widely studied regenerating structure in these organisms and provides an ideal model in which to understand how vertebrates can regenerate complex tissues. The present study focuses on Hsp‐70, a member of the stress‐related heat‐shock protein family. This protein is normally induced after a stress or trauma such as heat‐shock, ultraviolet irradiation, or wounding. Thus, studying its expression during axolotl limb regeneration, a response to an important traumatic event (amputation), is of great interest to further understand how the regenerative process is mediated. Using molecular biology and biochemical techniques, we have characterized both the spatiotemporal and quantitative expression patterns of Hsp‐70 in axolotl development and regeneration. Our results show that Hsp‐70 is expressed and regulated during axolotl development as in other vertebrates. Our data also demonstrate an up‐regulation of the RNA transcript for Hsp‐70 during limb regeneration as early as 24 hr after amputation that is maintained up to early differentiation. We also demonstrate a similar pattern of expression for the protein during regeneration. Finally, we show that axolotl Hsp‐70 is induced threefold after heat‐shock as observed in other vertebrates. Developmental Dynamics 233:1525–1534, 2005.


Wound Repair and Regeneration | 2013

Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing.

Joshua Vorstenbosch; Corrie L. Gallant-Behm; Alissa Trzeciak; Stéphane Roy; Thomas A. Mustoe; Anie Philip

Transforming growth factor‐β (TGF‐β) is a multifunctional growth factor involved in all aspects of wound healing. TGF‐β accelerates wound healing, but an excess of its presence at the wound site has been implicated in pathological scar formation. Our group has recently identified CD109, a glycophosphatidylinositol‐anchored protein, as a novel TGF‐β coreceptor and inhibitor of TGF‐β signaling in vitro. To determine the effects of CD109 in vivo on wound healing, we generated transgenic mice overexpressing CD109 in the epidermis. In excisional wounds, we show that CD109 transgenic mice display markedly reduced macrophage and neutrophil recruitment, granulation tissue area, and decreased Smad2 and Smad3 phosphorylation, whereas wound closure remains unaffected as compared with wild‐type littermates. Futhermore, we demonstrate that the expression of the proinflammatory cytokines interleukin‐1α and monocyte chemoattractant protein‐1, and extracellular matrix components is markedly decreased during wound healing in CD109 transgenic mice. In incisional wounds, CD109 transgenic mice show improved dermal architecture, whereas the tensile strength of the wound remains unchanged. Taken together, our findings demonstrate that CD109 overexpression in the epidermis reduces inflammation and granulation tissue area and improves collagen organization in vivo.

Collaboration


Dive into the Stéphane Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éric Villiard

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Gatien

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fadi Sader

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge