Stephanie A. White
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie A. White.
The Journal of Comparative Neurology | 2004
Anton Reiner; David J. Perkel; Laura L. Bruce; Ann B. Butler; András Csillag; Wayne J. Kuenzel; Loreta Medina; George Paxinos; T. Shimizu; Georg F. Striedter; Martin Wild; Gregory F. Ball; Sarah E. Durand; Onur Gütürkün; Diane W. Lee; Claudio V. Mello; Alice Schade Powers; Stephanie A. White; Gerald E. Hough; Lubica Kubikova; Tom V. Smulders; Kazuhiro Wada; Jennifer Dugas-Ford; Scott Husband; Keiko Yamamoto; Jing Yu; Connie Siang; Erich D. Jarvis
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names.
Nature Reviews Neuroscience | 2005
Erich D. Jarvis; Onur Güntürkün; Laura L. Bruce; András Csillag; Harvey J. Karten; Wayne J. Kuenzel; Loreta Medina; George Paxinos; David J. Perkel; T. Shimizu; Georg F. Striedter; J. Martin Wild; Gregory F. Ball; Jennifer Dugas-Ford; Sarah E. Durand; Gerald E. Hough; Scott Husband; Lubica Kubikova; Diane W. Lee; Claudio V. Mello; Alice Powers; Connie Siang; Tom V. Smulders; Kazuhiro Wada; Stephanie A. White; Keiko Yamamoto; Jing Yu; Anton Reiner; Ann B. Butler
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain — in particular the neocortex-like cognitive functions of the avian pallium — requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.
The Journal of Neuroscience | 2004
Ikuko Teramitsu; Lili C. Kudo; Sarah E. London; Daniel H. Geschwind; Stephanie A. White
Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in situ hybridization analyses for FoxP1 and FoxP2 in a songbird reveal a corticostriatal expression pattern congruent with the abnormalities in brain structures of affected KE family members. The overlap in FoxP1 and FoxP2 expression observed in the songbird suggests that combinatorial regulation by these molecules during neural development and within vocal control structures may occur. In support of this idea, we find that FOXP1 and FOXP2 expression patterns in human fetal brain are strikingly similar to those in the songbird, including localization to subcortical structures that function in sensorimotor integration and the control of skilled, coordinated movement. The specific colocalization of FoxP1 and FoxP2 found in several structures in the bird and human brain predicts that mutations in FOXP1 could also be related to speech disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Kazuhiro Wada; Jason T. Howard; Patrick McConnell; Osceola Whitney; Thierry Lints; Miriam V. Rivas; Haruhito Horita; Michael A. Patterson; Stephanie A. White; Constance Scharff; Sebastian Haesler; Shengli Zhao; Hironobu Sakaguchi; Masatoshi Hagiwara; Toshiyuki Shiraki; Tomoko Hirozane-Kishikawa; Pate Skene; Yoshihide Hayashizaki; Piero Carninci; Erich D. Jarvis
Songbirds have one of the most accessible neural systems for the study of brain mechanisms of behavior. However, neuroethological studies in songbirds have been limited by the lack of high-throughput molecular resources and gene-manipulation tools. To overcome these limitations, we constructed 21 regular, normalized, and subtracted full-length cDNA libraries from brains of zebra finches in 57 developmental and behavioral conditions in an attempt to clone as much of the brain transcriptome as possible. From these libraries, ≈14,000 transcripts were isolated, representing an estimated 4,738 genes. With the cDNAs, we created a hierarchically organized transcriptome database and a large-scale songbird brain cDNA microarray. We used the arrays to reveal a set of 33 genes that are regulated in forebrain vocal nuclei by singing behavior. These genes clustered into four anatomical and six temporal expression patterns. Their functions spanned a large range of cellular and molecular categories, from signal transduction, trafficking, and structural, to synaptically released molecules. With the full-length cDNAs and a lentiviral vector system, we were able to overexpress, in vocal nuclei, proteins of representative singing-regulated genes in the absence of singing. This publicly accessible resource http://songbirdtranscriptome.net can now be used to study molecular neuroethological mechanisms of behavior.
The Journal of Neuroscience | 2006
Ikuko Teramitsu; Stephanie A. White
Learned vocal communication, including human speech, is a socially influenced behavior limited to certain animals. This ability requires auditory feedback during vocalization, which allows for on-line evaluation, to achieve the desired vocal output. To date, FOXP2 (forkhead box P2), a transcriptional repressor, is the only molecule directly linked to human speech. Identified FOXP2 mutations cause orofacial dyspraxia accompanied by abnormalities in corticostriatal circuitry controlling voluntary orofacial movements. These observations implicate FOXP2 in the developmental formation of neural circuits used in speech, but whether FOXP2 additionally plays an active role in mature circuitry was unknown. To address this question, we use a songbird, the zebra finch (Taeniopygia guttata), whose learned song and underlying circuitry are well characterized. We show that, when adult males sing, FoxP2 mRNA is acutely downregulated within area X, the specific region of the songbird striatum dedicated to song. Furthermore, we find downregulation in males that sing by themselves (undirected singers) but not in males that sing to females (directed singers). This FoxP2 downregulation cannot be a simple consequence of the motor act because birds sang in both directed and undirected contexts. Our data suggest that FoxP2 is important not only for the formation but also for the function of vocal control circuitry. Social context-dependent, acute changes in FoxP2 within the basal ganglia of adult songbirds also suggest, by analogy, that the core deficits of affected humans extend beyond development and beyond basic central motor control.
The Journal of Neuroscience | 2006
Stephanie A. White; Simon E. Fisher; Daniel H. Geschwind; Constance Scharff; Timothy E. Holy
In 2001, a point mutation in the forkhead box P2 (FOXP2) coding sequence was identified as the basis of an inherited speech and language disorder suffered by members of the family known as “KE.” This mini-symposium review focuses on recent findings and research-in-progress, primarily from five laboratories. Each aims at capitalizing on the FOXP2 discovery to build a neurobiological bridge between molecule and phenotype. Below, we describe genetic through behavioral techniques used currently to investigate FoxP2 in birds, rodents, and humans for discovery of the neural bases of vocal learning and language.
Nature Neuroscience | 2000
Frederick S. Livingston; Stephanie A. White; Richard Mooney
Birdsong, like human speech, is learned via auditory experience during a developmentally restricted sensitive period. Within projection neurons of two avian forebrain nuclei, NMDA receptor-mediated EPSCs (NMDA-EPSCs) become fast during song development, a transition posited to limit learning. To discover whether slow NMDA-EPSCs at these synapses are required for learning, we delayed song learning beyond its normal endpoint, post-hatch day (PHD) 65, by raising zebra finches in isolation from song tutors. At PHD45, before learning, isolation delayed NMDA-EPSC maturation, but only transiently. By PHD65, NMDA-EPSCs in isolates were fast and adult-like, yet isolates presented with tutors readily learned song. Thus song learning did not require slow NMDA-EPSCs at synapses critical for song development.
Journal of Neurophysiology | 2008
Julie E. Miller; Elizabeth Spiteri; Michael C. Condro; Ryan T. Dosumu-Johnson; Daniel H. Geschwind; Stephanie A. White
Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2s target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.
Neuron | 2012
Austin T. Hilliard; Julie E. Miller; Elizabeth R. Fraley; Steve Horvath; Stephanie A. White
Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysis on microarray data from singing zebra finches to discover gene ensembles regulated during vocal behavior. We found ∼2,000 singing-regulated genes comprising three coexpression groups unique to area X, the basal ganglia subregion dedicated to learned vocalizations. These contained known targets of human FOXP2 and potential avian targets. We validated biological pathways not previously implicated in vocalization. Higher-order gene coexpression patterns, rather than expression levels, molecularly distinguish area X from the ventral striato-pallidum during singing. The previously unknown structure of singing-driven networks enables prioritization of molecular interactors that probably bear on human motor disorders, especially those affecting speech.
PLOS ONE | 2010
Ikuko Teramitsu; Amy Poopatanapong; Salvatore Torrisi; Stephanie A. White
Background Mutations in the FOXP2 transcription factor lead to language disorders with developmental onset. Accompanying structural abnormalities in cortico-striatal circuitry indicate that at least a portion of the behavioral phenotype is due to organizational deficits. We previously found parallel FoxP2 expression patterns in human and songbird cortico/pallio-striatal circuits important for learned vocalizations, suggesting that FoxP2s function in birdsong may generalize to speech. Methodology/Principal Findings We used zebra finches to address the question of whether FoxP2 is additionally important in the post-organizational function of these circuits. In both humans and songbirds, vocal learning depends on auditory guidance to achieve and maintain optimal vocal output. We tested whether deafening prior to or during the sensorimotor phase of song learning disrupted FoxP2 expression in song circuitry. As expected, the songs of deafened juveniles were abnormal, however basal FoxP2 levels were unaffected. In contrast, when hearing or deaf juveniles sang for two hours in the morning, FoxP2 was acutely down-regulated in the striatal song nucleus, area X. The extent of down-regulation was similar between hearing and deaf birds. Interestingly, levels of FoxP2 and singing were correlated only in hearing birds. Conclusions/Significance Hearing appears to link FoxP2 levels to the amount of vocal practice. As juvenile birds spent more time practicing than did adults, their FoxP2 levels are likely to be low more often. Behaviorally-driven reductions in the mRNA encoding this transcription factor could ultimately affect downstream molecules that function in vocal exploration, especially during sensorimotor learning.