Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphanie Boué is active.

Publication


Featured researches published by Stéphanie Boué.


Nature Biotechnology | 2008

Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes

Trond Aasen; Angel Raya; Maria J. Barrero; Elena Garreta; Antonella Consiglio; Federico Gonzalez; Rita Vassena; Josipa Bili cacute; Vladimir Pekarik; Gustavo Tiscornia; Michael J. Edel; Stéphanie Boué; Juan Carlos Izpisua Belmonte

The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.


Nature Reviews Molecular Cell Biology | 2011

Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration

Chris Jopling; Stéphanie Boué; Juan Carlos Izpisua Belmonte

The ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming. Recent advances have shown that the addition of a group of genes can not only restore pluripotency in a fully differentiated cell state (reprogramming) but can also induce the cell to proliferate (dedifferentiation) or even switch to another cell type (transdifferentiation). Current research aims to understand how these processes work and to eventually harness them for use in regenerative medicine.


Cell Stem Cell | 2009

Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2

Alessandra Giorgetti; Nuria Montserrat; Trond Aasen; Federico Gonzalez; Ignacio Rodríguez-Pizá; Rita Vassena; Angel Raya; Stéphanie Boué; Maria J. Barrero; Begoña Aran Corbella; Marta Torrabadella; Anna Veiga; Juan Carlos Izpisua Belmonte

Document S1. Supplemental Experimental Procedures and 11 FiguresxDownload (.88 MB ) Document S1. Supplemental Experimental Procedures and 11 FiguresMovie S1. Rhythmically Beating Cardiomyocytes from CBiPS2F-1Specific in vitro differentiation of CBiPS2F-1 into beating cardiomyocytes.xDownload (.75 MB ) Movie S1. Rhythmically Beating Cardiomyocytes from CBiPS2F-1Specific in vitro differentiation of CBiPS2F-1 into beating cardiomyocytes.


Nature | 2011

Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome

Guang-Hui Liu; Basam Z. Barkho; Sergio Ruiz; Dinh Diep; Jing Qu; Sheng-Lian Yang; Athanasia D. Panopoulos; Keiichiro Suzuki; Leo Kurian; Christopher A. Walsh; James Thompson; Stéphanie Boué; Ho Lim Fung; Ignacio Sancho-Martinez; Kun Zhang; John R. Yates; Juan Carlos Izpisua Belmonte

Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.


Nature Reviews Genetics | 2011

Methods for making induced pluripotent stem cells: reprogramming à la carte

Federico Gonzalez; Stéphanie Boué; Juan Carlos Izpisua Belmonte

Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells — known as induced pluripotent stem cells (iPSCs) — are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.


Nature Cell Biology | 2011

LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells

Antonio Adamo; Borja Sesé; Stéphanie Boué; Julio Castaño; Ida Paramonov; Maria J. Barrero; Juan Carlos Izpisua Belmonte

We identify LSD1 (lysine-specific demethylase 1; also known as KDM1A and AOF2) as a key histone modifier that participates in the maintenance of pluripotency through the regulation of bivalent domains, a chromatin environment present at the regulatory regions of developmental genes that contains both H3K4 di/trimethylation and H3K27 trimethylation marks. LSD1 occupies the promoters of a subset of developmental genes that contain bivalent domains and are co-occupied by OCT4 and NANOG in human embryonic stem cells, where it controls the levels of H3K4 methylation through its demethylase activity. Thus, LSD1 has a role in maintaining the silencing of several developmental genes in human embryonic stem cells by regulating the critical balance between H3K4 and H3K27 methylation at their regulatory regions.


Development | 2011

Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development.

Rita Vassena; Stéphanie Boué; Eva González-Roca; Begoña Aran; Herbert Auer; Anna Veiga; Juan Carlos Izpisua Belmonte

The events regulating human preimplantation development are still largely unknown owing to a scarcity of material, ethical and legal limitations and a lack of reliable techniques to faithfully amplify the transcriptome of a single cell. Nonetheless, human embryology is gathering renewed interest due to its close relationship with both stem cell biology and epigenetic reprogramming to pluripotency and their importance in regenerative medicine. Carefully timed genome-wide transcript analyses of single oocytes and embryos uncovered a series of successive waves of embryonic transcriptional initiation that start as early as the 2-cell stage. In addition, we identified the hierarchical activation of genes involved in the regulation of pluripotency. Finally, we developed HumER, a database of human preimplantation gene expression, to serve the scientific community. Importantly, our work links early transcription in the human embryo with the correct execution of the pluripotency program later in development and paves the way for the identification of factors to improve epigenetic reprogramming.


Cell Stem Cell | 2010

Epigenetic Mechanisms that Regulate Cell Identity

Maria J. Barrero; Stéphanie Boué; Juan Carlos Izpisua Belmonte

Individual cell fate decisions can vary according to changes in gene expression in response to environmental, developmental, or metabolic cues. This plasticity is tightly regulated during embryonic development and mediated by the exquisitely coordinated activation and repression of groups of genes. Genes that become repressed are immersed in a condensed chromatin environment that renders them refractory to stimulation. This mechanism is responsible for both the loss of cell plasticity during differentiation and the preservation of cell identity. Understanding the molecular events involved in the establishment and maintenance of these restrictive domains will benefit the design of strategies for cellular reprogramming, differentiation, and cancer treatment.


Cell Reports | 2013

Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to Pluripotency

Maria J. Barrero; Borja Sesé; Bernd Kuebler; Josipa Bilic; Stéphanie Boué; Mercè Martí; Juan Carlos Izpisua Belmonte

Transcription-factor-induced reprogramming of somatic cells to pluripotency is a very inefficient process, probably due to the existence of important epigenetic barriers that are imposed during differentiation and that contribute to preserving cell identity. In an effort to decipher the molecular nature of these barriers, we followed a genome-wide approach, in which we identified macrohistone variants (macroH2A) as highly expressed in human somatic cells but downregulated after reprogramming to pluripotency, as well as strongly induced during differentiation. Knockdown of macrohistone variants in human keratinocytes increased the efficiency of reprogramming to pluripotency, whereas overexpression had opposite effects. Genome-wide occupancy profiles show that in human keratinocytes, macroH2A.1 preferentially occupies genes that are expressed at low levels and are marked with H3K27me3, including pluripotency-related genes and bivalent developmental regulators. The presence of macroH2A.1 at these genes prevents the regain of H3K4me2 during reprogramming, imposing an additional layer of repression that preserves cell identity.


PLOS ONE | 2010

Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate

Stéphanie Boué; Ida Paramonov; Maria J. Barrero; Juan Carlos Izpisua Belmonte

After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanakas group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs) are truly functionally equivalent to embryonic stem cells (ESCs) and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs) which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the best iPSC lines out of a large number of lines generated in each reprogramming experiment.

Collaboration


Dive into the Stéphanie Boué's collaboration.

Top Co-Authors

Avatar

Juan Carlos Izpisua Belmonte

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Borja Sesé

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Begoña Aran

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mercè Martí

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trond Aasen

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge