Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphanie Boulêtreau is active.

Publication


Featured researches published by Stéphanie Boulêtreau.


PLOS ONE | 2012

“Freshwater Killer Whales”: Beaching Behavior of an Alien Fish to Hunt Land Birds

Julien Cucherousset; Stéphanie Boulêtreau; Frédéric Azémar; Arthur Compin; Mathieu Guillaume; Frédéric Santoul

The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ13C and δ15N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.


Freshwater Science | 2012

The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance

Nabil Majdi; Benoı̂t Mialet; Stéphanie Boyer; Michèle Tackx; Joséphine Leflaive; Stéphanie Boulêtreau; Loı̈c Ten-Hage; Frédéric Julien; Robert Fernandez; Evelyne Buffan-Dubau

Abstract.  Habitat stability is an important driver of ecological community composition and development. River epilithic biofilms are particularly unstable habitats for the establishment of benthic communities because they are regularly disturbed by floods. Our aim was to determine the influence of habitat instability on meiobenthic organisms. We hypothesized that hydrologic variables are the most important predictors of meiofauna distribution. We monitored epilithic communities (meiofauna and microalgae) with a high sampling frequency during 2 sampling periods with contrasting hydrodynamic patterns in a temperate river (the Garonne, France). Nematodes and rotifers dominated meiofaunal assemblages. The critical flow velocity threshold for their maintenance in the biofilm was ∼30 cm/s, a result suggesting that meiofauna can resist higher flow velocity within the biofilm than within sediments. Nematode distribution was primarily influenced by the duration of undisturbed periods, whereas rotifer distribution was also correlated with the thickness of the biofilm. During the periods after floods, rotifers were faster colonizers than nematodes. Collectively, our results show that flow regime was an essential driver for biofilm community development.


Science of The Total Environment | 2012

Temperature dependence of denitrification in phototrophic river biofilms.

Stéphanie Boulêtreau; E. Salvo; Emilie Lyautey; S. Mastrorillo

Denitrification is an ecosystem service of nitrogen load regulation along the terrestrial-freshwater-marine continuum. The present study documents the short-term temperature sensitivity of denitrification enzyme activity in phototrophic river biofilms as a typical microbial assemblage of this continuum. Denitrification measurements were performed using the acetylene inhibition method at four incubation temperatures: 1.1, 12.1, 21.2 and 30.9°C. For this range of temperature, N(2)O production could be fitted to an exponential function of incubation temperature, yielding mean (±standard error) activation energy of 1.42 (±0.24) eV and Q(10) of 7.0 (±1.4). This first quantification of denitrification enzyme activity temperature dependence in phototrophic river biofilms compares with previous studies performed in soils and sediments. This demonstrates the high temperature dependence of denitrification as compared to other community-level metabolisms such as respiration or photosynthesis. This result suggests that global warming can unbalance natural community metabolisms in phototrophic river biofilms and affect their biogeochemical budget.


PLOS ONE | 2011

Colossal Aggregations of Giant Alien Freshwater Fish as a Potential Biogeochemical Hotspot

Stéphanie Boulêtreau; Julien Cucherousset; Sébastien Villéger; Rémi Masson; Frédéric Santoul

The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (±10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 – 1132) and biomass density of 23 kg m−2 (14 – 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m−2 h−1 and 400 mg N m−2 h−1, potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species.


Applied and Environmental Microbiology | 2011

Electroactivity of Phototrophic River Biofilms and Constitutive Cultivable Bacteria

Emilie Lyautey; Amandine Cournet; Soizic Morin; Stéphanie Boulêtreau; Luc Etcheverry; Jean-Yves Charcosset; François Delmas; Alain Bergel

ABSTRACT Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.


Water Research | 2011

Rotating disk electrodes to assess river biofilm thickness and elasticity

Stéphanie Boulêtreau; Jean-Yves Charcosset; Jean Gamby; Emilie Lyautey; Sylvain Mastrorillo; Frédéric Azémar; Frédéric Moulin; Bernard Tribollet

The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s(-1) in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t(7) and t(21), respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 μm (mean ± standard deviation, n = 6) in the fast flow section at t(7) to 340 ± 140 μm (n = 3) in the slow flow section at t(21). Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred μm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 μm rpm(1/2), n = 8) than in the fast flow sections (790 ± 350 μm rpm(1/2), n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method.


Hydrobiologia | 2005

Zooplankton in the Schelde estuary, Belgium and the Netherlands: long-term trends in spring populations

Michèle Tackx; Frédéric Azémar; Stéphanie Boulêtreau; N. De Pauw; K. Bakker; Benoît Sautour; Stéphane Gasparini; Karline Soetaert; S. Van Damme; Patrick Meire

A compilation of available data in between 1967 and 2002 on spring zooplankton abundance was made for the brackish and the freshwater zone of the Schelde estuary. The general picture is a significant increase of 1–2 orders of magnitude in abundance for Rotifera, Copepoda and Branchiopoda (mainly Cladocera) in the freshwater zone, while zooplankton abundance in the brackishwater zone remained more constant. Possible natural and management related causes for this increase in zooplankton abundance are briefly discussed.


Zoology and ecology | 2012

Effect of large-scale environmental variables and human pressure on distribution patterns of exotic continental fish in east Algeria.

Rachid Chaibi; Abdelkrim Si Bachir; Haroun Chenchouni; Stéphanie Boulêtreau; Régis Céréghino; Frédéric Santoul

This study aims to identify large-scale environmental variables that explain the distribution of continental exotic fish across five bioclimatic regions in east Algeria (160,000 km²), North Africa. Fish communities were sampled at 39 sites from 2007 to 2010. Seven environmental variables were investigated: habitat type, altitude, latitude, longitude, bioclimatic region, minimum and maximum air temperatures and human pressure. The common carp (Cyprinus carpio Linnaeus, 1758) and the silver carp (Hypophtalmichthys molitrix Valenciennes, 1844) were the most widespread exotic species. Almost all exotic fishes were distributed over desert and sub-humid bioclimatic scales. Reservoirs represent the type of habitat that houses the greatest exotic species richness. The distribution pattern of exotic fishes was mainly predetermined by the type of habitat. Alien ichtyofauna colonizes primarily man-made hydrosystems regardless of environmental variables or the degree of human pressure, making these habitats more vuln...


Science of The Total Environment | 2014

Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

Stéphanie Boulêtreau; Emilie Lyautey; Sophie Dubois; Arthur Compin; Cécile Delattre; Aurélie Touron-Bodilis; Sylvain Mastrorillo

Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams.


Journal of Fish Biology | 2017

Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet

N. Guillerault; Stéphanie Boulêtreau; A. Iribar; A. Valentini; Frédéric Santoul

In this study, the results of conventional stomach-content analysis are compared with the recent DNA metabarcoding approach on faeces to identify fish species consumed by non-native European catfish Silurus glanis in the Garonne River (south-western France), with a special emphasis on anadromous prey. Fourteen prey species were identified in the stomach contents or faeces, including four anadromous fish species. Despite higher intestine than stomach emptiness, more species were identified through faecal analysis (11 of 14) than through stomach-content analysis (five of 14) suggesting that DNA metabarcoding on faeces is an efficient, non-intrusive technique to study the diet of predatory fishes.

Collaboration


Dive into the Stéphanie Boulêtreau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Eiff

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge