Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie L. Barrow is active.

Publication


Featured researches published by Stephanie L. Barrow.


Journal of Biological Chemistry | 2006

Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells

Dabid N. Criddle; Stuart Gillies; Heidi K. Baumgartner-Wilson; Mohammed Jaffar; Edwin C. Chinje; Sarah Passmore; Michael Chvanov; Stephanie L. Barrow; Oleg Vsevolodovich Gerasimenko; Alexei V. Tepikin; Robert Sutton; O. H. Petersen

Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells

Mark W. Sherwood; Ian A. Prior; Svetlana Voronina; Stephanie L. Barrow; Jonathan D. Woodsmith; Oleg Vsevolodovich Gerasimenko; O. H. Petersen; Alexei V. Tepikin

The intracellular activation of trypsinogen, which is both pH- and calcium-dependent, is an important early step in the development of acute pancreatitis. The cellular compartment in which trypsinogen activation occurs currently is unknown. We therefore investigated the site of intracellular trypsinogen activation by using an established cellular model of acute pancreatitis: supramaximal stimulation of pancreatic acinar cells with cholecystokinin. We used fluorescent dextrans as fluid phase tracers and observed the cholecystokinin-elicited formation and translocation of large endocytic vacuoles. The fluorescent probe rhodamine 110 bis-(CBZ-l-isoleucyl-l-prolyl-l-arginine amide) dihydrochloride (BZiPAR) was used to detect trypsinogen activation. Fluid phase tracers were colocalized with cleaved BZiPAR, indicating that trypsinogen activation occurred within endocytic vacuoles. The development of BZiPAR fluorescence was inhibited by the trypsin inhibitor benzamidine. Fluorescein dextran and Oregon Green 488 BAPTA-5N were used to measure endosomal pH and calcium, respectively. The pH in endocytic vacuoles was 5.9 ± 0.1, and the calcium ion concentration was 37 ± 11 μM. The caged calcium probe o-nitrophenyl EGTA and UV uncaging were used to increase calcium in endocytic vacuoles. This increase of calcium caused by calcium uncaging was followed by recovery to the prestimulated level within ≈100 s. We propose that the initiation of acute pancreatitis depends on endocytic vacuole formation and trypsinogen activation in this compartment.


Biochimica et Biophysica Acta | 2009

Modulation of calcium signalling by mitochondria

Ciara M. Walsh; Stephanie L. Barrow; Svetlana Voronina; Michael Chvanov; O. H. Petersen; Alexei V. Tepikin

In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca(2+) signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species - which in turn modulate components of the Ca(2+) signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca(2+) pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca(2+) via the mitochondrial Ca(2+) uniporter or transporting Ca(2+) from the interior of the organelle into the cytosol by means of Na+/Ca(2+) or H+/Ca(2+) exchangers. Considerable progress in understanding the relationship between Ca(2+) signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.


Neural Development | 2009

Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis

Stephanie L. Barrow; John R. L. Constable; Eliana Clark; Faten El-Sabeawy; A. Kimberley McAllister; Philip Washbourne

BackgroundThe cell adhesion molecule pair neuroligin1 (Nlg1) and β-neurexin (β-NRX) is a powerful inducer of postsynaptic differentiation of glutamatergic synapses in vitro. Because Nlg1 induces accumulation of two essential components of the postsynaptic density (PSD) – PSD-95 and NMDA receptors (NMDARs) – and can physically bind PSD-95 and NMDARs at mature synapses, it has been proposed that Nlg1 recruits NMDARs to synapses through its interaction with PSD-95. However, PSD-95 and NMDARs are recruited to nascent synapses independently and it is not known if Nlg1 accumulates at synapses before these PSD proteins. Here, we investigate how a single type of cell adhesion molecule can recruit multiple types of synaptic proteins to new synapses with distinct mechanisms and time courses.ResultsNlg1 was present in young cortical neurons in two distinct pools before synaptogenesis, diffuse and clustered. Time-lapse imaging revealed that the diffuse Nlg1 aggregated at, and the clustered Nlg1 moved to, sites of axodendritic contact with a rapid time course. Using a patching assay that artificially induced clusters of Nlg, the time course and mechanisms of recruitment of PSD-95 and NMDARs to those Nlg clusters were characterized. Patching Nlg induced clustering of PSD-95 via a slow palmitoylation-dependent step. In contrast, NMDARs directly associated with clusters of Nlg1 during trafficking. Nlg1 and NMDARs were highly colocalized in dendrites before synaptogenesis and they became enriched with a similar time course at synapses with age. Patching of Nlg1 dramatically decreased the mobility of NMDAR transport packets. Finally, Nlg1 was biochemically associated with NMDAR transport packets, presumably through binding of NMDARs to MAGUK proteins that, in turn, bind Nlg1. This interaction was essential for colocalization and co-transport of Nlg1 with NMDARs.ConclusionOur results suggest that axodendritic contact leads to rapid accumulation of Nlg1, recruitment of NMDARs co-transported with Nlg1 soon thereafter, followed by a slower, independent recruitment of PSD-95 to those nascent synapses.


Gastroenterology | 2010

Dynamic Changes in Cytosolic and Mitochondrial ATP Levels in Pancreatic Acinar Cells

Svetlana Voronina; Stephanie L. Barrow; Alec W.M. Simpson; Oleg Vsevolodovich Gerasimenko; Gabriela da Silva Xavier; Guy A. Rutter; O. H. Petersen; Alexei V. Tepikin

BACKGROUND & AIMS Previous studies of pancreatic acinar cells characterized the effects of Ca(2+)-releasing secretagogues and substances, inducing acute pancreatitis on mitochondrial Ca(2+), transmembrane potential, and NAD(P)H, but dynamic measurements of the crucial intracellular adenosine triphosphate (ATP) levels have not been reported. Here we characterized the effects of these agents on ATP levels in the cytosol and mitochondria. METHODS ATP levels were monitored using cytosolic- or mitochondrial-targeted luciferases. RESULTS Inhibition of oxidative phosphorylation produced a substantial decrease in cytosolic ATP comparable to that induced by inhibition of glycolysis. Cholecystokinin-8 (CCK) increased cytosolic ATP in spite of accelerating ATP consumption. Acetylcholine, caerulein, and bombesin had similar effect. A bile acid, taurolithocholic acid 3-sulfate (TLC-S); a fatty acid, palmitoleic acid (POA); and palmitoleic acid ethyl ester (POAEE) reduced cytosolic ATP. The ATP decrease in response to these substances was observed in cells with intact or inhibited oxidative phosphorylation. TLC-S, POA, and POAEE reduced mitochondrial ATP, whereas physiological CCK increased mitochondrial ATP. Supramaximal CCK produced a biphasic response composed of a small initial decline followed by a stronger increase. CONCLUSIONS Both glycolysis and oxidative phosphorylation make substantial contributions to ATP production in acinar cells. Ca(2+)-releasing secretagogues increased ATP level in the cytosol and mitochondria of intact isolated cells. TLC-S, POA, and POAEE reduced cytosolic and mitochondrial ATP. When cells rely on nonoxidative ATP production, secretagogues as well as TLC-S, POA, and POAEE all diminish cytosolic ATP levels.


Biochemical Journal | 2008

A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3

Margaret E. Graham; Mark T. W. Handley; Jeff W. Barclay; Leo F. Ciufo; Stephanie L. Barrow; Alan Morgan; Robert D. Burgoyne

Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.


The Journal of Neuroscience | 2013

MHCI Requires MEF2 Transcription Factors to Negatively Regulate Synapse Density during Development and in Disease

Bradford M. Elmer; Myka L. Estes; Stephanie L. Barrow; A. Kimberley McAllister

Major histocompatibility complex class I (MHCI) molecules negatively regulate cortical connections and are implicated in neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. However, the mechanisms that mediate these effects are unknown. Here, we report a novel MHCI signaling pathway that requires the myocyte enhancer factor 2 (MEF2) transcription factors. In young rat cortical neurons, MHCI regulates MEF2 in an activity-dependent manner and requires calcineurin-mediated activation of MEF2 to limit synapse density. Manipulating MEF2 alone alters synaptic strength and GluA1 content, but not synapse density, implicating activity-dependent MEF2 activation as critical for MHCI signaling. The MHCI-MEF2 pathway identified here also mediates the effects of a mouse model of maternal immune activation (MIA) on connectivity in offspring. MHCI and MEF2 levels are higher, and synapse density is lower, on neurons from MIA offspring. Most important, dysregulation of MHCI and MEF2 is required for the MIA-induced reduction in neural connectivity. These results identify a previously unknown MHCI-calcineurin-MEF2 signaling pathway that regulates the establishment of cortical connections and mediates synaptic defects caused by MIA, a risk factor for autism spectrum disorders and schizophrenia.


Acta Physiologica | 2009

Downstream from calcium signalling: mitochondria, vacuoles and pancreatic acinar cell damage

Svetlana Voronina; Mark W. Sherwood; Stephanie L. Barrow; Nick J. Dolman; Alan R. Conant; Alexei V. Tepikin

Ca2+ is one of the most ancient and ubiquitous second messengers. Highly polarized pancreatic acinar cells serve as an important cellular model for studies of Ca2+ signalling and homeostasis. Downstream effects of Ca2+ signalling have been and continue to be an important research avenue. The primary functions regulated by Ca2+ in pancreatic acinar cells – exocytotic secretion and fluid secretion – have been defined and extensively characterized in the second part of the last century. The role of cytosolic Ca2+ in cellular pathology and the related question of the interplay between Ca2+ signalling and bioenergetics are important current research lines in our and other laboratories. Recent findings in these interwoven research areas are discussed in the current review.


Nature Neuroscience | 2012

Neuroligins help dendrites keep up with the Joneses.

Stephanie L. Barrow; A. Kimberley McAllister

A study reconciling contradictory in vitro and in vivo data on neuroligins in synapse formation shows that cell-to-cell variability in neuroligin-1 levels, mediating competition for presynaptic inputs, regulates synapse density.


Gastroenterology | 2006

Fatty Acid Ethyl Esters Cause Pancreatic Calcium Toxicity via Inositol Trisphosphate Receptors and Loss of ATP Synthesis

David N. Criddle; J. A. Murphy; Gregorio Fistetto; Stephanie L. Barrow; Alexei V. Tepikin; John P. Neoptolemos; Robert Sutton; Ole Holger Petersen

Collaboration


Dive into the Stephanie L. Barrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Sherwood

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge