Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie L. Rellick is active.

Publication


Featured researches published by Stephanie L. Rellick.


Virus Genes | 2007

A Shope Fibroma virus PYRIN-only protein modulates the host immune response

Andrea Dorfleutner; Siera Jo Talbott; Nicole B. Bryan; Kristin N. Funya; Stephanie L. Rellick; John C. Reed; Xianglin Shi; Yon Rojanasakul; Daniel C. Flynn; Christian Stehlik

PYRIN domain (PYD) proteins have recently emerged as important signaling molecules involved in the development of innate immunity to intracellular pathogens through activation of inflammatory mediator pathways. ASC is the central adaptor protein, which links pathogen recognition by PYD-containing pathogen recognition receptors to the activation of downstream effectors, including activation of Caspase-1 and NF-κB. The cellular PYD-only protein 1 (cPOP1) can block the recruitment of ASC to activated PAN receptors and thereby functions as an endogenous inhibitor of the PYD-mediated signal transduction pathway. Here we describe the identification and characterization of a Shope Fibroma homolog to cPOP1. Like cPOP1, a Shope Fibroma virus-encoded POP (vPOP), co-localizes and directly associates with ASC and inhibits PYD-mediated signal transduction. Poxviruses are known to encode immune evasive proteins to promote host cell infection and suppression of the host immune response. Poxvirus-encoded vPOPs represent a novel class of immune evasive proteins and impair the host response by blocking Cryopyrin and ASC inflammasome-mediated activation of pro-Caspase-1 and subsequent processing of pro-interleukin (IL)-1β, and expression of vPOPs causes activation of NF-κB.


Infection and Immunity | 2007

Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation.

Andrea Dorfleutner; Nicole B. Bryan; Siera Jo Talbott; Kristin N. Funya; Stephanie L. Rellick; John C. Reed; Xianglin Shi; Yon Rojanasakul; Daniel C. Flynn; Christian Stehlik

ABSTRACT Pyrin domain (PYD) proteins have recently emerged as important signaling molecules involved in the development of innate immunity against intracellular pathogens through activation of inflammatory mediator pathways. ASC is the central adaptor protein, which links pathogen recognition by PYD-containing pathogen recognition receptors, known as PYD-Nod-like receptors (NLR), PAN, PYPAF, NALP, Nod, and Caterpiller proteins, to the activation of downstream effectors, including activation of caspase-1 and NF-κB. Activation of these effectors occurs when specific protein complexes, known as inflammasomes, are formed. PYD signal transduction leads to inflammasome assembly and activation of specific effector proteins. It is modulated by a cellular PYD-only protein (cPOP1), which binds to ASC and interferes with the recruitment of ASC to activated PYD-NLRs. Here we describe the identification and characterization of a second cellular POP (cPOP2), which shows highest homology to the PYD of PAN1. cPOP2 binds to ASC and PAN1, thereby blocking formation of cryopyrin and PAN1-containing inflammasomes, activation of caspase-1, and subsequent processing and secretion of bioactive interleukin-1β. Existence of a second cPOP provides additional insights into inflammasome formation and suggests that POPs might be a common regulatory mechanism to “fine-tune” the activity of specific PYD-NLR family protein-containing inflammasomes.


PLOS ONE | 2010

Neurotrophins Regulate Bone Marrow Stromal Cell IL-6 Expression through the MAPK Pathway

Fariba Rezaee; Stephanie L. Rellick; Giovanni Piedimonte; Stephen M. Akers; Heather O'Leary; Karen H. Martin; Michael Craig; Laura F. Gibson

Background The hosts response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development. Methodology/Principal Findings In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using ELISA and real-time PCR. Conclusion BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75NTR. These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFκB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis.


Journal of Neurochemistry | 2015

Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity

Danielle N. Doll; Stephanie L. Rellick; Taura L. Barr; Xuefang Ren; James W. Simpkins

Tumor necrosis factor alpha (TNF‐α) is known to exacerbate ischemic brain injury; however, the mechanism is unknown. Previous studies have evaluated the effects of TNF‐α on neurons with long exposures to high doses of TNF‐α, which is not pathophysiologically relevant. We characterized the rapid effects of TNF‐α on basal respiration, ATP production, and maximal respiration using pathophysiologically relevant, post‐stroke concentrations of TNF‐α. We observed a reduction in mitochondrial function as early as 1.5 h after exposure to low doses of TNF‐α, followed by a decrease in cell viability in HT‐22 cells and primary neurons. Subsequently, we used the HT‐22 cell line to determine the mechanism by which TNF‐α causes a rapid and profound reduction in mitochondrial function. Pre‐treating with TNF‐R1 antibody, but not TNF‐R2 antibody, ameliorated the neurotoxic effects of TNF‐α, indicating that TNF‐α exerts its neurotoxic effects through TNF‐R1. We observed an increase in caspase 8 activity and a decrease in mitochondrial membrane potential after exposure to TNF‐α which resulted in a release of cytochrome c from the mitochondria into the cytosol. These novel findings indicate for the first time that an acute exposure to pathophysiologically relevant concentrations of TNF‐α has neurotoxic effects mediated by a rapid impairment of mitochondrial function.


Brain Research | 2016

Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity.

Saumyendra N. Sarkar; S. Jun; Stephanie L. Rellick; Dominic D Quintana; John Z. Cavendish; James W. Simpkins

Polygenetic risk factors and reduced expression of many genes in late-onset Alzheimers disease (AD) impedes identification of a target(s) for disease-modifying therapies. We identified a single microRNA, miR-34a that is over expressed in specific brain regions of AD patients as well as in the 3xTg-AD mouse model. Specifically, increased miR-34a expression in the temporal cortex region compared to age matched healthy control correlates with severity of AD pathology. miR-34a over expression in patients tissue and forced expression in primary neuronal culture correlates with concurrent repression of its target genes involved in synaptic plasticity, oxidative phosphorylation and glycolysis. The repression of oxidative phosphorylation and glycolysis related proteins correlates with reduced ATP production and glycolytic capacity, respectively. We also found that miR-34a overexpressed neurons secrete miR-34a containing exosomes that are taken up by neighboring neurons. Furthermore, miR-34a targets dozens of genes whose expressions are known to be correlated with synchronous activity in resting state functional networks. Our analysis of human genomic sequences from the tentative promoter of miR-34a gene shows the presence of NFκB, STAT1, c-Fos, CREB and p53 response elements. Together, our results raise the possibilities that pathophysiology-induced activation of specific transcription factor may lead to increased expression of miR-34a gene and miR-34a mediated concurrent repression of its target genes in neural networks may result in dysfunction of synaptic plasticity, energy metabolism, and resting state network activity. Thus, our results provide insights into polygenetic AD mechanisms and disclose miR-34a as a potential therapeutic target for AD.


Leukemia Research | 2011

Cellular elements of the subarachnoid space promote ALL survival during chemotherapy

Stephen M. Akers; Stephanie L. Rellick; James Fortney; Laura F. Gibson

CNS infiltration by leukemic cells remains a problematic disease manifestation of acute lymphoblastic leukemia (ALL). Prophylactic regimens for CNS leukemia including intrathecal chemotherapeutics have decreased CNS involvement in ALL, but are not without toxicities. Using co-culture models, we show that astrocytes, choroid plexus epithelial cells, and meningeal cells protect ALL cells from chemotherapy-induced cell death using drugs included in prophylactic regimens-cytarabine, dexamethasone, and methotrexate. Understanding how ALL cells survive in the CNS remains invaluable for designing strategies to prevent CNS leukemia and minimizing the need for treatment in this sensitive anatomical site where treatment-induced toxicity is of significant concern.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Maternal Engineered Nanomaterial Exposure Disrupts Progeny Cardiac Function and Bioenergetics

Quincy A. Hathaway; Cody E. Nichols; Danielle L. Shepherd; Phoebe A. Stapleton; Sarah L. McLaughlin; Janelle C. Stricker; Stephanie L. Rellick; Mark V. Pinti; Alaeddin B. Abukabda; Carroll R. McBride; Jinghai Yi; Seth M. Stine; Timothy R. Nurkiewicz; John M. Hollander

Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.


Biological Research For Nursing | 2015

A Genomic Profile of the Immune Response to Stroke With Implications for Stroke Recovery

Taura L. Barr; Reyna VanGilder; Stephanie L. Rellick; Steven Brooks; Danielle N. Doll; Ann Noelle Lucke-Wold; Dongquan Chen; James Denvir; Steven Warach; Andrew Singleton; Mar Matarin

Objectives: The objectives of this study were to determine the change in gene expression between two time points following stroke and to identify biomarkers of stroke recovery through gene expression profiling and pathway analysis. Methods: Peripheral blood was collected from 34 ischemic stroke patients (confirmed by magnetic resonance imaging) ≥18 years of age, within 24 hr of symptom onset and 24–48 hr later, and from healthy controls. The Modified Rankin Scale (MRS) was used to determine 30-day recovery. Total RNA was extracted from whole blood in Paxgene RNA tubes, amplified, and hybridized to Illumina HumanRef-8v2 bead chips. Gene expression was compared in a univariate manner between stroke patients at both time points and good versus bad outcome using t-test in GeneSpring. Inflation of Type 1 error was corrected by false discovery rate (FDR), and Ingenuity Systems Pathway analysis (IPA) was performed. A secondary validation cohort was recruited from a local hospital. Results: Three genes were significantly downregulated over time (LY96, IL8, and SDPR; FDR corrected p < .05). This finding was confirmed in a validation cohort of stroke patients (n = 8). IPA revealed cytotoxic T-lymphocyte antigen 4 (CTLA4) signaling was the most significant pathway present in the peripheral whole blood of stroke patients 24–48 hr after onset. When controlling for age and National Institutes of Health Stroke Scale score, high baseline expression of TLR2 and TLR4 significantly predicted worse scores on the MRS. Conclusion: CTLA4 signaling is a novel pathway for the study of stroke-induced immune suppression. Markers of immune dysfunction early after stroke may prove useful for identifying patients with increased risk of poor recovery.


Cytokine | 2012

Melphalan exposure induces an interleukin-6 deficit in bone marrow stromal cells and osteoblasts.

Stephanie L. Rellick; Debbie Piktel; Cheryl Walton; Brett Hall; William P. Petros; James Fortney; Marieta Gencheva; Jim Denvir; Gerald R. Hobbs; Michael Craig; Laura F. Gibson

Bone marrow stromal cells (BMSC) and osteoblasts are critical components of the microenvironment that support hematopoietic recovery following bone marrow transplantation. Aggressive chemotherapy not only affects tumor cells, but also influences additional structural and functional components of the microenvironment. Successful reconstitution of hematopoiesis following stem cell or bone marrow transplantation after aggressive chemotherapy is dependent upon components of the microenvironment maintaining their supportive function. This includes secretion of soluble factors and expression of cellular adhesion molecules that impact on development of hematopoietic cells. In the current study, we investigated the effects of chemotherapy treatment on BMSC and human osteoblast (HOB) expression of interleukin-6 (IL-6) as one regulatory factor. IL-6 is a pleiotropic cytokine which has diverse effects on hematopoietic cell development. In the current study we demonstrate that exposure of BMSC or HOB to melphalan leads to decreases in IL-6 protein expression. Decreased IL-6 protein is the most pronounced following melphalan exposure compared to several other chemotherapeutic agents tested. We also observed that melphalan decreased IL-6 mRNA in both BMSC and HOB. Finally, using a model of BMSC or HOB co-cultured with myeloma cells exposed to melphalan, we observed that IL-6 protein was also decreased, consistent with treatment of adherent cells alone. Collectively, these observations are of dual significance. First, suggesting that chemotherapy induced IL-6 deficits in the bone marrow occur which may result in defective hematopoietic support of early progenitor cells. In contrast, the decrease in IL-6 protein may be a beneficial mechanism by which melphalan acts as a valuable therapeutic agent for treatment of multiple myeloma, where IL-6 present in the bone marrow acts as a proliferative factor and contributes to disease progression. Taken together, these data emphasize the responsiveness of the microenvironment to diverse stress that is important to consider in therapeutic settings.


PLOS ONE | 2012

Bone Marrow Osteoblast Damage by Chemotherapeutic Agents

Stephanie L. Rellick; Heather O'Leary; Debbie Piktel; Cheryl Walton; James Fortney; Stephen M. Akers; Karen H. Martin; James Denvir; Goran Boskovic; Donald A. Primerano; Jeffrey A. Vos; Nathanael G. Bailey; Marieta Gencheva; Laura F. Gibson

Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.

Collaboration


Dive into the Stephanie L. Rellick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taura L. Barr

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuefang Ren

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Hu

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge